Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 1;102(3):561–575. doi: 10.1172/JCI3861

Characterization of a novel subset of CD8(+) T cells that expands in patients receiving interleukin-12.

J A Gollob 1, C P Schnipper 1, E Orsini 1, E Murphy 1, J F Daley 1, S B Lazo 1, D A Frank 1, D Neuberg 1, J Ritz 1
PMCID: PMC508917  PMID: 9691093

Abstract

IL-12 has significant antitumor activity in mice that may be mediated by CD8(+) T cells. We show in this report that repeated subcutaneous injections of IL-12 in patients with cancer resulted in the selective expansion of a subset of peripheral blood CD8(+) T cells. This T cell subset expressed high levels of CD18 and upregulated IL-12 receptor expression after IL-12 treatment in vivo. In normal subjects, these CD3(+)CD8(+)CD18(bright) T cells expressed IL-12 and IL-2 receptors and adhesion/costimulatory molecules to a greater degree than other CD8(+) and CD4(+) T cells. They appeared morphologically as large granular lymphocytes, although they did not express NK cell markers such as CD56. In addition, CD8(+)CD18(bright) T cells were almost exclusively T cell receptor (TCR) alphabeta+, and exhibited a TCR Vbeta repertoire that was strikingly oligoclonal, whereas the Vbeta repertoire of CD18(dim) T cells was polyclonal. Although CD8+CD18(bright) T cells demonstrated little functional responsiveness to IL-12 or IL-2 alone in vitro, they responded to the combination of IL-12+IL-2 with strong IFN-gamma production and proliferation and enhanced non-MHC-restricted cytolytic activity. In contrast, CD18(dim) T cells were not activated by IL-12 or IL-2, alone or in combination. These findings demonstrate that CD8+CD18(bright) T cells are a unique population of peripheral blood lymphocytes with features of both memory and effector cells that are capable of TCR-independent activation through combined stimulation with IL-12+IL-2. As this activation results in IFN-gamma production and enhanced cytolytic activity, these T cells may play a role in innate as well as acquired immunity to tumors and infectious pathogens. Additional studies will be necessary to determine whether CD8+CD18(bright) T cells mediate the antitumor effect of IL-12 or IL-2 administered to cancer patients, and if so, whether maximal activation of these T cells with the combination of IL-12+IL-2 in vivo can augment the clinical effectiveness of these cytokines.

Full Text

The Full Text of this article is available as a PDF (426.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins M. B., Robertson M. J., Gordon M., Lotze M. T., DeCoste M., DuBois J. S., Ritz J., Sandler A. B., Edington H. D., Garzone P. D. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997 Mar;3(3):409–417. [PubMed] [Google Scholar]
  2. Bacon C. M., Petricoin E. F., 3rd, Ortaldo J. R., Rees R. C., Larner A. C., Johnston J. A., O'Shea J. J. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7307–7311. doi: 10.1073/pnas.92.16.7307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bajetta E., Del Vecchio M., Mortarini R., Nadeau R., Rakhit A., Rimassa L., Fowst C., Borri A., Anichini A., Parmiani G. Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin Cancer Res. 1998 Jan;4(1):75–85. [PubMed] [Google Scholar]
  4. Bree A. G., Schlerman F. J., Kaviani M. D., Hastings R. C., Hitz S. L., Goldman S. J. Multiple effects on peripheral hematology following administration of recombinant human interleukin 12 to nonhuman primates. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1150–1157. doi: 10.1006/bbrc.1994.2583. [DOI] [PubMed] [Google Scholar]
  5. Brunda M. J., Luistro L., Warrier R. R., Wright R. B., Hubbard B. R., Murphy M., Wolf S. F., Gately M. K. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993 Oct 1;178(4):1223–1230. doi: 10.1084/jem.178.4.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caligiuri M. A., Murray C., Robertson M. J., Wang E., Cochran K., Cameron C., Schow P., Ross M. E., Klumpp T. R., Soiffer R. J. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest. 1993 Jan;91(1):123–132. doi: 10.1172/JCI116161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carson W. E., Giri J. G., Lindemann M. J., Linett M. L., Ahdieh M., Paxton R., Anderson D., Eisenmann J., Grabstein K., Caligiuri M. A. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994 Oct 1;180(4):1395–1403. doi: 10.1084/jem.180.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospísil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med. 1991 Apr 1;173(4):869–879. doi: 10.1084/jem.173.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi Y. W., Kotzin B., Herron L., Callahan J., Marrack P., Kappler J. Interaction of Staphylococcus aureus toxin "superantigens" with human T cells. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8941–8945. doi: 10.1073/pnas.86.22.8941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chua A. O., Chizzonite R., Desai B. B., Truitt T. P., Nunes P., Minetti L. J., Warrier R. R., Presky D. H., Levine J. F., Gately M. K. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol. 1994 Jul 1;153(1):128–136. [PubMed] [Google Scholar]
  11. Claret E. J., Alyea E. P., Orsini E., Pickett C. C., Collins H., Wang Y., Neuberg D., Soiffer R. J., Ritz J. Characterization of T cell repertoire in patients with graft-versus-leukemia after donor lymphocyte infusion. J Clin Invest. 1997 Aug 15;100(4):855–866. doi: 10.1172/JCI119601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cui J., Shin T., Kawano T., Sato H., Kondo E., Toura I., Kaneko Y., Koseki H., Kanno M., Taniguchi M. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 1997 Nov 28;278(5343):1623–1626. doi: 10.1126/science.278.5343.1623. [DOI] [PubMed] [Google Scholar]
  13. Desai B. B., Quinn P. M., Wolitzky A. G., Mongini P. K., Chizzonite R., Gately M. K. IL-12 receptor. II. Distribution and regulation of receptor expression. J Immunol. 1992 May 15;148(10):3125–3132. [PubMed] [Google Scholar]
  14. Gately M. K., Desai B. B., Wolitzky A. G., Quinn P. M., Dwyer C. M., Podlaski F. J., Familletti P. C., Sinigaglia F., Chizonnite R., Gubler U. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol. 1991 Aug 1;147(3):874–882. [PubMed] [Google Scholar]
  15. Gollob J. A., Kawasaki H., Ritz J. Interferon-gamma and interleukin-4 regulate T cell interleukin-12 responsiveness through the differential modulation of high-affinity interleukin-12 receptor expression. Eur J Immunol. 1997 Mar;27(3):647–652. doi: 10.1002/eji.1830270311. [DOI] [PubMed] [Google Scholar]
  16. Gollob J. A., Li J., Reinherz E. L., Ritz J. CD2 regulates responsiveness of activated T cells to interleukin 12. J Exp Med. 1995 Sep 1;182(3):721–731. doi: 10.1084/jem.182.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A., Ahdieh M. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994 May 13;264(5161):965–968. doi: 10.1126/science.8178155. [DOI] [PubMed] [Google Scholar]
  18. Hamann D., Baars P. A., Rep M. H., Hooibrink B., Kerkhof-Garde S. R., Klein M. R., van Lier R. A. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997 Nov 3;186(9):1407–1418. doi: 10.1084/jem.186.9.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heufler C., Koch F., Stanzl U., Topar G., Wysocka M., Trinchieri G., Enk A., Steinman R. M., Romani N., Schuler G. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol. 1996 Mar;26(3):659–668. doi: 10.1002/eji.1830260323. [DOI] [PubMed] [Google Scholar]
  20. Klimas N., Patarca R., Walling J., Garcia R., Mayer V., Moody D., Okarma T., Fletcher M. A. Clinical and immunological changes in AIDS patients following adoptive therapy with activated autologous CD8 T cells and interleukin-2 infusion. AIDS. 1994 Aug;8(8):1073–1081. doi: 10.1097/00002030-199408000-00006. [DOI] [PubMed] [Google Scholar]
  21. Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. doi: 10.1084/jem.170.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kovacs J. A., Baseler M., Dewar R. J., Vogel S., Davey R. T., Jr, Falloon J., Polis M. A., Walker R. E., Stevens R., Salzman N. P. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med. 1995 Mar 2;332(9):567–575. doi: 10.1056/NEJM199503023320904. [DOI] [PubMed] [Google Scholar]
  23. Kovacs J. A., Vogel S., Albert J. M., Falloon J., Davey R. T., Jr, Walker R. E., Polis M. A., Spooner K., Metcalf J. A., Baseler M. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med. 1996 Oct 31;335(18):1350–1356. doi: 10.1056/NEJM199610313351803. [DOI] [PubMed] [Google Scholar]
  24. Lalvani A., Brookes R., Hambleton S., Britton W. J., Hill A. V., McMichael A. J. Rapid effector function in CD8+ memory T cells. J Exp Med. 1997 Sep 15;186(6):859–865. doi: 10.1084/jem.186.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mehrotra P. T., Wu D., Crim J. A., Mostowski H. S., Siegel J. P. Effects of IL-12 on the generation of cytotoxic activity in human CD8+ T lymphocytes. J Immunol. 1993 Sep 1;151(5):2444–2452. [PubMed] [Google Scholar]
  26. Mobley J. L., Dailey M. O. Regulation of adhesion molecule expression by CD8 T cells in vivo. I. Differential regulation of gp90MEL-14 (LECAM-1), Pgp-1, LFA-1, and VLA-4 alpha during the differentiation of cytotoxic T lymphocytes induced by allografts. J Immunol. 1992 Apr 15;148(8):2348–2356. [PubMed] [Google Scholar]
  27. Mountford A. P., Anderson S., Wilson R. A. Induction of Th1 cell-mediated protective immunity to Schistosoma mansoni by co-administration of larval antigens and IL-12 as an adjuvant. J Immunol. 1996 Jun 15;156(12):4739–4745. [PubMed] [Google Scholar]
  28. Murray H. W., Hariprashad J. Interleukin 12 is effective treatment for an established systemic intracellular infection: experimental visceral leishmaniasis. J Exp Med. 1995 Jan 1;181(1):387–391. doi: 10.1084/jem.181.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nakarai T., Robertson M. J., Streuli M., Wu Z., Ciardelli T. L., Smith K. A., Ritz J. Interleukin 2 receptor gamma chain expression on resting and activated lymphoid cells. J Exp Med. 1994 Jul 1;180(1):241–251. doi: 10.1084/jem.180.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ogawa M., Tsutsui T., Zou J. P., Mu J., Wijesuriya R., Yu W. G., Herrmann S., Kubo T., Fujiwara H., Hamaoka T. Enhanced induction of very late antigen 4/lymphocyte function-associated antigen 1-dependent T-cell migration to tumor sites following administration of interleukin 12. Cancer Res. 1997 Jun 1;57(11):2216–2222. [PubMed] [Google Scholar]
  31. Phillips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986 Sep 1;164(3):814–825. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Presky D. H., Yang H., Minetti L. J., Chua A. O., Nabavi N., Wu C. Y., Gately M. K., Gubler U. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14002–14007. doi: 10.1073/pnas.93.24.14002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Puisieux I., Even J., Pannetier C., Jotereau F., Favrot M., Kourilsky P. Oligoclonality of tumor-infiltrating lymphocytes from human melanomas. J Immunol. 1994 Sep 15;153(6):2807–2818. [PubMed] [Google Scholar]
  34. Robertson M. J., Soiffer R. J., Wolf S. F., Manley T. J., Donahue C., Young D., Herrmann S. H., Ritz J. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med. 1992 Mar 1;175(3):779–788. doi: 10.1084/jem.175.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rogge L., Barberis-Maino L., Biffi M., Passini N., Presky D. H., Gubler U., Sinigaglia F. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med. 1997 Mar 3;185(5):825–831. doi: 10.1084/jem.185.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Romagnani S. Biology of human TH1 and TH2 cells. J Clin Immunol. 1995 May;15(3):121–129. doi: 10.1007/BF01543103. [DOI] [PubMed] [Google Scholar]
  37. Rossol S., Marinos G., Carucci P., Singer M. V., Williams R., Naoumov N. V. Interleukin-12 induction of Th1 cytokines is important for viral clearance in chronic hepatitis B. J Clin Invest. 1997 Jun 15;99(12):3025–3033. doi: 10.1172/JCI119498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  39. Sensi M., Farina C., Maccalli C., Lupetti R., Nicolini G., Anichini A., Parmiani G., Berd D. Clonal expansion of T lymphocytes in human melanoma metastases after treatment with a hapten-modified autologous tumor vaccine. J Clin Invest. 1997 Feb 15;99(4):710–717. doi: 10.1172/JCI119215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Szabo S. J., Dighe A. S., Gubler U., Murphy K. M. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med. 1997 Mar 3;185(5):817–824. doi: 10.1084/jem.185.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tough D. F., Borrow P., Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science. 1996 Jun 28;272(5270):1947–1950. doi: 10.1126/science.272.5270.1947. [DOI] [PubMed] [Google Scholar]
  42. Tough D. F., Sun S., Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med. 1997 Jun 16;185(12):2089–2094. doi: 10.1084/jem.185.12.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today. 1993 Jul;14(7):335–338. doi: 10.1016/0167-5699(93)90230-I. [DOI] [PubMed] [Google Scholar]
  44. Yang Y. G., Sergio J. J., Pearson D. A., Szot G. L., Shimizu A., Sykes M. Interleukin-12 preserves the graft-versus-leukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood. 1997 Dec 1;90(11):4651–4660. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES