Abstract
Release of glucose by liver and kidney are both increased in diabetic animals. Although the overall release of glucose into the circulation is increased in humans with diabetes, excessive release of glucose by either their liver or kidney has not as yet been demonstrated. The present experiments were therefore undertaken to assess the relative contributions of hepatic and renal glucose release to the excessive glucose release found in type 2 diabetes. Using a combination of isotopic and balance techniques to determine total systemic glucose release and renal glucose release in postabsorptive type 2 diabetic subjects and age-weight-matched nondiabetic volunteers, their hepatic glucose release was then calculated as the difference between total systemic glucose release and renal glucose release. Renal glucose release was increased nearly 300% in diabetic subjects (321+/-36 vs. 125+/-15 micromol/min, P < 0.001). Hepatic glucose release was increased approximately 30% (P = 0.03), but increments in hepatic and renal glucose release were comparable (2.60+/-0.70 vs. 2.21+/-0.32, micromol.kg-1.min-1, respectively, P = 0.26). Renal glucose uptake was markedly increased in diabetic subjects (353+/-48 vs. 103+/-10 micromol/min, P < 0.001), resulting in net renal glucose uptake in the diabetic subjects (92+/-50 micromol/ min) versus a net output in the nondiabetic subjects (21+/-14 micromol/min, P = 0.043). Renal glucose uptake was inversely correlated with renal FFA uptake (r = -0.51, P < 0.01), which was reduced by approximately 60% in diabetic subjects (10. 9+/-2.7 vs. 27.0+/-3.3 micromol/min, P < 0.002). We conclude that in type 2 diabetes, both liver and kidney contribute to glucose overproduction and that renal glucose uptake is markedly increased. The latter may suppress renal FFA uptake via a glucose-fatty acid cycle and explain the accumulation of glycogen commonly found in the diabetic kidney.
Full Text
The Full Text of this article is available as a PDF (174.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amico J. A., Klein I. Diabetic management in patients with renal failure. Diabetes Care. 1981 May-Jun;4(3):430–434. doi: 10.2337/diacare.4.3.430. [DOI] [PubMed] [Google Scholar]
- BEARN A. G., BILLING B. H., SHERLOCK S. Hepatic glucose output and hepatic insulin sensitivity in diabetes mellitus. Lancet. 1951 Oct 20;2(6686):698–701. doi: 10.1016/s0140-6736(51)91476-6. [DOI] [PubMed] [Google Scholar]
- BIERMAN E. L., DOLE V. P., ROBERTS T. N. An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes. 1957 Nov-Dec;6(6):475–479. doi: 10.2337/diab.6.6.475. [DOI] [PubMed] [Google Scholar]
- BRUN C. A rapid method for the determination of para-aminohippuric acid in kidney function tests. J Lab Clin Med. 1951 Jun;37(6):955–958. [PubMed] [Google Scholar]
- Biava C., Grossman A., West M. Ultrastructural observations on renal glycogen in normal and pathologic human kidneys. Lab Invest. 1966 Jan;15(1 Pt 2):330–356. [PubMed] [Google Scholar]
- Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care. 1992 Dec;15(12):1835–1843. doi: 10.2337/diacare.15.12.1835. [DOI] [PubMed] [Google Scholar]
- Carlsten A., Hallgren B., Jagenburg R., Svanborg A., Werkö L. Arterio-hepatic venous differences of free fatty acids and amino acids. Studies in patients with diabetes or essential hypercholesterolemia, and in healthy individuals. Acta Med Scand. 1967 Feb;181(2):199–207. doi: 10.1111/j.0954-6820.1967.tb07246.x. [DOI] [PubMed] [Google Scholar]
- Cersosimo E., Judd R. L., Miles J. M. Insulin regulation of renal glucose metabolism in conscious dogs. J Clin Invest. 1994 Jun;93(6):2584–2589. doi: 10.1172/JCI117270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin E., Zamah A. M., Landau D., Grønbcek H., Flyvbjerg A., LeRoith D., Bondy C. A. Changes in facilitative glucose transporter messenger ribonucleic acid levels in the diabetic rat kidney. Endocrinology. 1997 Mar;138(3):1267–1275. doi: 10.1210/endo.138.3.5015. [DOI] [PubMed] [Google Scholar]
- Consoli A., Nurjhan N., Reilly J. J., Jr, Bier D. M., Gerich J. E. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J Clin Invest. 1990 Dec;86(6):2038–2045. doi: 10.1172/JCI114940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craven P. A., DeRubertis F. R. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest. 1989 May;83(5):1667–1675. doi: 10.1172/JCI114066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danne T., Spiro M. J., Spiro R. G. Effect of high glucose on type IV collagen production by cultured glomerular epithelial, endothelial, and mesangial cells. Diabetes. 1993 Jan;42(1):170–177. doi: 10.2337/diab.42.1.170. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Ferrannini E., Hendler R., Felig P., Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes. 1983 Jan;32(1):35–45. doi: 10.2337/diab.32.1.35. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Gunnarsson R., Björkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
- Dinneen S., Gerich J., Rizza R. Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. N Engl J Med. 1992 Sep 3;327(10):707–713. doi: 10.1056/NEJM199209033271007. [DOI] [PubMed] [Google Scholar]
- Dominguez J. H., Camp K., Maianu L., Feister H., Garvey W. T. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Physiol. 1994 Feb;266(2 Pt 2):F283–F290. doi: 10.1152/ajprenal.1994.266.2.F283. [DOI] [PubMed] [Google Scholar]
- Dzúrik R., Chorváthová V. Relation between the uptake of glucose and fatty acids by the rat kidney in vivo. Physiol Bohemoslov. 1972;21(4):361–365. [PubMed] [Google Scholar]
- Exton J. H., Harper S. C., Tucker A. L., Ho R. J. Effects of insulin on gluconeogenesis and cyclic AMP levels in perfused livers from diabetic rats. Biochim Biophys Acta. 1973 Nov 2;329(1):23–40. doi: 10.1016/0304-4165(73)90005-6. [DOI] [PubMed] [Google Scholar]
- Felig P., Wahren J., Hendler R. Influence of maturity-onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes. 1978 Feb;27(2):121–126. doi: 10.2337/diab.27.2.121. [DOI] [PubMed] [Google Scholar]
- Fukagawa N. K., Minaker K. L., Rowe J. W., Matthews D. E., Bier D. M., Young V. R. Glucose and amino acid metabolism in aging man: differential effects of insulin. Metabolism. 1988 Apr;37(4):371–377. doi: 10.1016/0026-0495(88)90138-2. [DOI] [PubMed] [Google Scholar]
- Guder W. G., Ross B. D. Enzyme distribution along the nephron. Kidney Int. 1984 Aug;26(2):101–111. doi: 10.1038/ki.1984.143. [DOI] [PubMed] [Google Scholar]
- Harmon D. L., Britton R. A., Prior R. L. In vitro rates of oxidation and gluconeogenesis from L(+)- and D(-)lactate in bovine tissues. Comp Biochem Physiol B. 1984;77(2):365–368. doi: 10.1016/0305-0491(84)90344-4. [DOI] [PubMed] [Google Scholar]
- Heilig C. W., Concepcion L. A., Riser B. L., Freytag S. O., Zhu M., Cortes P. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995 Oct;96(4):1802–1814. doi: 10.1172/JCI118226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KREBS H. A., SPEAKE R. N., HEMS R. ACCELERATION OF RENAL GLUCONEOGENESIS BY KETONE BODIES AND FATTY ACIDS. Biochem J. 1965 Mar;94:712–720. doi: 10.1042/bj0940712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley D. E., Simoneau J. A. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest. 1994 Dec;94(6):2349–2356. doi: 10.1172/JCI117600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEE J. B., VANCE V. K., CAHILL G. F., Jr Metabolism of C14-labeled substrates by rabbit kidney cortex and medulla. Am J Physiol. 1962 Jul;203:27–36. doi: 10.1152/ajplegacy.1962.203.1.27. [DOI] [PubMed] [Google Scholar]
- Lemieux G., Aranda M. R., Fournel P., Lemieux C. Renal enzymes during experimental diabetes mellitus in the rat. Role of insulin, carbohydrate metabolism, and ketoacidosis. Can J Physiol Pharmacol. 1984 Jan;62(1):70–75. doi: 10.1139/y84-010. [DOI] [PubMed] [Google Scholar]
- Mauer S. M., Steffes M. W., Ellis E. N., Sutherland D. E., Brown D. M., Goetz F. C. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984 Oct;74(4):1143–1155. doi: 10.1172/JCI111523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer C., Nadkarni V., Stumvoll M., Gerich J. Human kidney free fatty acid and glucose uptake: evidence for a renal glucose-fatty acid cycle. Am J Physiol. 1997 Sep;273(3 Pt 1):E650–E654. doi: 10.1152/ajpendo.1997.273.3.E650. [DOI] [PubMed] [Google Scholar]
- Miles J. M., Rizza R. A., Haymond M. W., Gerich J. E. Effects of acute insulin deficiency on glucose and ketone body turnover in man: evidence for the primacy of overproduction of glucose and ketone bodies in the genesis of diabetic ketoacidosis. Diabetes. 1980 Nov;29(11):926–930. doi: 10.2337/diab.29.11.926. [DOI] [PubMed] [Google Scholar]
- Mithieux G., Vidal H., Zitoun C., Bruni N., Daniele N., Minassian C. Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats. Diabetes. 1996 Jul;45(7):891–896. doi: 10.2337/diab.45.7.891. [DOI] [PubMed] [Google Scholar]
- Park H. C., Leal-Pinto E., MacLeod M. B., Pitts R. F. CO2 production from plasma free fatty acids by the intact functioning kidney of the dog. Am J Physiol. 1974 Nov;227(5):1192–1198. doi: 10.1152/ajplegacy.1974.227.5.1192. [DOI] [PubMed] [Google Scholar]
- RENOLD A. E., TENG C. T., NESBETT F. B., HASTING A. B. Studies on carbohydrate metabolism in rat liver slices. II. The effect of fasting and of hormonal deficiencies. J Biol Chem. 1953 Oct;204(2):533–546. [PubMed] [Google Scholar]
- Reaven G. M. The fourth musketeer--from Alexandre Dumas to Claude Bernard. Diabetologia. 1995 Jan;38(1):3–13. doi: 10.1007/BF02369347. [DOI] [PubMed] [Google Scholar]
- Sochor M., Baquer N. Z., McLean P. Glucose overutilization in diabetes: evidence from studies on the changes in hexokinase, the pentose phosphate pathway and glucuronate-xylulose pathway in rat kidney cortex in diabetes. Biochem Biophys Res Commun. 1979 Jan 15;86(1):32–39. doi: 10.1016/0006-291x(79)90378-4. [DOI] [PubMed] [Google Scholar]
- Stumvoll M., Chintalapudi U., Perriello G., Welle S., Gutierrez O., Gerich J. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest. 1995 Nov;96(5):2528–2533. doi: 10.1172/JCI118314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taskinen M. R., Bogardus C., Kennedy A., Howard B. V. Multiple disturbances of free fatty acid metabolism in noninsulin-dependent diabetes. Effect of oral hypoglycemic therapy. J Clin Invest. 1985 Aug;76(2):637–644. doi: 10.1172/JCI112016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toth E. L., Lee D. W. 'Spontaneous'/uremic hypoglycemia is not a distinct entity: substantiation from a literature review. Nephron. 1991;58(3):325–329. doi: 10.1159/000186445. [DOI] [PubMed] [Google Scholar]
- WEBER G., CANTERO A. Glucose-6-phosphatase activity in normal, pre-cancerous, and neoplastic tissues. Cancer Res. 1955 Feb;15(2):105–108. [PubMed] [Google Scholar]
- Wahren J., Felig P. Renal substrate exchange in human diabetes mellitus. Diabetes. 1975 Aug;24(8):730–734. doi: 10.2337/diab.24.8.730. [DOI] [PubMed] [Google Scholar]
- Waldhäusl W., Bratusch-Marrain P., Gasić S., Korn A., Nowotny P. Insulin production rate, hepatic insulin retention and splanchnic carbohydrate metabolism after oral glucose ingestion in hyperinsulinaemic Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1982 Jul;23(1):6–15. doi: 10.1007/BF00257722. [DOI] [PubMed] [Google Scholar]
- Weber G., Lea M. A., Convery H. J., Stamm N. B. Regulation of gluconeogenesis and glycolysis: studies of mechanisms controlling enzyme activity. Adv Enzyme Regul. 1967;5:257–300. doi: 10.1016/0065-2571(67)90020-9. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Kreisberg R. A., Felts P. W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci U S A. 1966 Jul;56(1):247–254. doi: 10.1073/pnas.56.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wirthensohn G., Guder W. G. Renal substrate metabolism. Physiol Rev. 1986 Apr;66(2):469–497. doi: 10.1152/physrev.1986.66.2.469. [DOI] [PubMed] [Google Scholar]