Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 15;102(4):663–670. doi: 10.1172/JCI2117

Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils.

M J Coffey 1, S M Phare 1, S George 1, M Peters-Golden 1, P H Kazanjian 1
PMCID: PMC508927  PMID: 9710433

Abstract

Neutrophil (PMN) dysfunction occurs in HIV infection. Leukotrienes (LT) are mediators derived from the 5-lipoxygenase (5-LO) pathway that play a role in host defense and are synthesized by PMN. We investigated the synthesis of LT by PMN from HIV-infected subjects. There was a reduction (4.0+/-1.3% of control) in LT synthesis in PMN from HIV-infected compared with normal subjects. This was associated with reduced expression of 5-LO-activating protein (31.2+/-9.6% of normal), but not of 5-LO itself. Since HIV does not directly infect PMN, we considered that these effects were due to reduced release of cytokines, such as granulocyte colony-stimulating factor (G-CSF). We examined the effect of G-CSF treatment (300 microgram daily for 5 d) on eight HIV-infected subjects. PMN were studied in vitro before therapy (day 1) and on days 4 and 7. LTB4 synthesis was increased on day 4 of G-CSF treatment, and returned toward day 1 levels on day 7. 5-LO and 5-LO-activating protein expression were increased in parallel. As a functional correlate to this increase in PMN LT synthesis by G-CSF, we examined the effects on killing of Cryptococcus neoformans. Anticryptococcal activity of PMN from HIV-infected subjects was less than that of PMN from normal subjects. G-CSF treatment improved fungistatic activity of PMN. This increase in antifungal activity was attenuated by in vitro treatment with the LT synthesis inhibitor, MK-886. In conclusion, PMN from HIV-infected subjects demonstrate reduced 5-LO metabolism and antifungal activity in vitro, which was reversed by in vivo G-CSF therapy.

Full Text

The Full Text of this article is available as a PDF (278.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailie M. B., Standiford T. J., Laichalk L. L., Coffey M. J., Strieter R., Peters-Golden M. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J Immunol. 1996 Dec 15;157(12):5221–5224. [PubMed] [Google Scholar]
  2. Bar-Shavit Z., Noff D., Edelstein S., Meyer M., Shibolet S., Goldman R. 1,25-dihydroxyvitamin D3 and the regulation of macrophage function. Calcif Tissue Int. 1981;33(6):673–676. doi: 10.1007/BF02409507. [DOI] [PubMed] [Google Scholar]
  3. Chang K. J., Saito H., Tatsuno I., Tamura Y., Yoshida S. Role of 5-lipoxygenase products of arachidonic acid in cell-to-cell interaction between macrophages and natural killer cells in rat spleen. J Leukoc Biol. 1991 Sep;50(3):273–278. doi: 10.1002/jlb.50.3.273. [DOI] [PubMed] [Google Scholar]
  4. Chaturvedi V., Wong B., Newman S. L. Oxidative killing of Cryptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J Immunol. 1996 May 15;156(10):3836–3840. [PubMed] [Google Scholar]
  5. Chen G. H., Curtis J. L., Mody C. H., Christensen P. J., Armstrong L. R., Toews G. B. Effect of granulocyte-macrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. J Immunol. 1994 Jan 15;152(2):724–734. [PubMed] [Google Scholar]
  6. Chen T. P., Roberts R. L., Wu K. G., Ank B. J., Stiehm E. R. Decreased superoxide anion and hydrogen peroxide production by neutrophils and monocytes in human immunodeficiency virus-infected children and adults. Pediatr Res. 1993 Oct;34(4):544–550. doi: 10.1203/00006450-199310000-00032. [DOI] [PubMed] [Google Scholar]
  7. Chuck S. L., Sande M. A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989 Sep 21;321(12):794–799. doi: 10.1056/NEJM198909213211205. [DOI] [PubMed] [Google Scholar]
  8. Coffey M. J., Phare S. M., Kazanjian P. H., Peters-Golden M. 5-Lipoxygenase metabolism in alveolar macrophages from subjects infected with the human immunodeficiency virus. J Immunol. 1996 Jul 1;157(1):393–399. [PubMed] [Google Scholar]
  9. Coffey M., Peters-Golden M., Fantone J. C., 3rd, Sporn P. H. Membrane association of active 5-lipoxygenase in resting cells. Evidence for novel regulation of the enzyme in the rat alveolar macrophage. J Biol Chem. 1992 Jan 5;267(1):570–576. [PubMed] [Google Scholar]
  10. Demitsu T., Katayama H., Saito-Taki T., Yaoita H., Nakano M. Phagocytosis and bactericidal action of mouse peritoneal macrophages treated with leukotriene B4. Int J Immunopharmacol. 1989;11(7):801–808. doi: 10.1016/0192-0561(89)90134-3. [DOI] [PubMed] [Google Scholar]
  11. Denzlinger C., Kapp A., Grimberg M., Gerhartz H. H., Wilmanns W. Enhanced endogenous leukotriene biosynthesis in patients treated with granulocyte-macrophage colony-stimulating factor. Blood. 1990 Nov 1;76(9):1765–1770. [PubMed] [Google Scholar]
  12. Denzlinger C., Tetzloff W., Gerhartz H. H., Pokorny R., Sagebiel S., Haberl C., Wilmanns W. Differential activation of the endogenous leukotriene biosynthesis by two different preparations of granulocyte-macrophage colony-stimulating factor in healthy volunteers. Blood. 1993 Apr 15;81(8):2007–2013. [PubMed] [Google Scholar]
  13. Greco N. J., Milks M. M., Panganamala R. V. Metabolism of arachidonic acid in neutrophils from alloxan-diabetic rabbits. Prostaglandins Leukot Essent Fatty Acids. 1991 Apr;42(4):201–208. doi: 10.1016/0952-3278(91)90084-i. [DOI] [PubMed] [Google Scholar]
  14. Henderson W. R., Jr Eicosanoids and lung inflammation. Am Rev Respir Dis. 1987 May;135(5):1176–1185. doi: 10.1164/arrd.1987.135.5.1176. [DOI] [PubMed] [Google Scholar]
  15. Hirschtick R. E., Glassroth J., Jordan M. C., Wilcosky T. C., Wallace J. M., Kvale P. A., Markowitz N., Rosen M. J., Mangura B. T., Hopewell P. C. Bacterial pneumonia in persons infected with the human immunodeficiency virus. Pulmonary Complications of HIV Infection Study Group. N Engl J Med. 1995 Sep 28;333(13):845–851. doi: 10.1056/NEJM199509283331305. [DOI] [PubMed] [Google Scholar]
  16. Hébert M. J., Takano T., Holthöfer H., Brady H. R. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J Immunol. 1996 Oct 1;157(7):3105–3115. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Levitz S. M. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev Infect Dis. 1991 Nov-Dec;13(6):1163–1169. doi: 10.1093/clinids/13.6.1163. [DOI] [PubMed] [Google Scholar]
  19. Lieschke G. J., Burgess A. W. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (1). N Engl J Med. 1992 Jul 2;327(1):28–35. doi: 10.1056/NEJM199207023270106. [DOI] [PubMed] [Google Scholar]
  20. Lu M. C., Peters-Golden M., Hostetler D. E., Robinson N. E., Derksen F. J. Age-related enhancement of 5-lipoxygenase metabolic capacity in cattle alveolar macrophages. Am J Physiol. 1996 Oct;271(4 Pt 1):L547–L554. doi: 10.1152/ajplung.1996.271.4.L547. [DOI] [PubMed] [Google Scholar]
  21. Marder P., Sawyer J. S., Froelich L. L., Mann L. L., Spaethe S. M. Blockade of human neutrophil activation by 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy]propoxy]phenoxy]benzoic acid (LY293111), a novel leukotriene B4 receptor antagonist. Biochem Pharmacol. 1995 May 26;49(11):1683–1690. doi: 10.1016/0006-2952(95)00078-e. [DOI] [PubMed] [Google Scholar]
  22. McColl S. R., Krump E., Naccache P. H., Poubelle P. E., Braquet P., Braquet M., Borgeat P. Granulocyte-macrophage colony-stimulating factor increases the synthesis of leukotriene B4 by human neutrophils in response to platelet-activating factor. Enhancement of both arachidonic acid availability and 5-lipoxygenase activation. J Immunol. 1991 Feb 15;146(4):1204–1211. [PubMed] [Google Scholar]
  23. Mellors J. W., Kingsley L. A., Rinaldo C. R., Jr, Todd J. A., Hoo B. S., Kokka R. P., Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995 Apr 15;122(8):573–579. doi: 10.7326/0003-4819-122-8-199504150-00003. [DOI] [PubMed] [Google Scholar]
  24. Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
  25. Peters-Golden M., McNish R. W., Hyzy R., Shelly C., Toews G. B. Alterations in the pattern of arachidonate metabolism accompany rat macrophage differentiation in the lung. J Immunol. 1990 Jan 1;144(1):263–270. [PubMed] [Google Scholar]
  26. Pitrak D. L., Bak P. M., DeMarais P., Novak R. M., Andersen B. R. Depressed neutrophil superoxide production in human immunodeficiency virus infection. J Infect Dis. 1993 Jun;167(6):1406–1410. doi: 10.1093/infdis/167.6.1406. [DOI] [PubMed] [Google Scholar]
  27. Pouliot M., McDonald P. P., Borgeat P., McColl S. R. Granulocyte/macrophage colony-stimulating factor stimulates the expression of the 5-lipoxygenase-activating protein (FLAP) in human neutrophils. J Exp Med. 1994 Apr 1;179(4):1225–1232. doi: 10.1084/jem.179.4.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pouliot M., McDonald P. P., Khamzina L., Borgeat P., McColl S. R. Granulocyte-macrophage colony-stimulating factor enhances 5-lipoxygenase levels in human polymorphonuclear leukocytes. J Immunol. 1994 Jan 15;152(2):851–858. [PubMed] [Google Scholar]
  29. Ring W. L., Riddick C. A., Baker J. R., Munafo D. A., Bigby T. D. Lymphocytes stimulate expression of 5-lipoxygenase and its activating protein in monocytes in vitro via granulocyte macrophage colony-stimulating factor and interleukin 3. J Clin Invest. 1996 Mar 1;97(5):1293–1301. doi: 10.1172/JCI118545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roilides E., Mertins S., Eddy J., Walsh T. J., Pizzo P. A., Rubin M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor. J Pediatr. 1990 Oct;117(4):531–540. doi: 10.1016/s0022-3476(05)80684-5. [DOI] [PubMed] [Google Scholar]
  31. Roilides E., Walsh T. J., Pizzo P. A., Rubin M. Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis. 1991 Mar;163(3):579–583. doi: 10.1093/infdis/163.3.579. [DOI] [PubMed] [Google Scholar]
  32. Samuelsson B., Funk C. D. Enzymes involved in the biosynthesis of leukotriene B4. J Biol Chem. 1989 Nov 25;264(33):19469–19472. [PubMed] [Google Scholar]
  33. Serhan C. N., Lundberg U., Weissmann G., Samuelsson B. Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins. 1984 Apr;27(4):563–581. doi: 10.1016/0090-6980(84)90092-3. [DOI] [PubMed] [Google Scholar]
  34. Skerrett S. J., Henderson W. R., Martin T. R. Alveolar macrophage function in rats with severe protein calorie malnutrition. Arachidonic acid metabolism, cytokine release, and antimicrobial activity. J Immunol. 1990 Feb 1;144(3):1052–1061. [PubMed] [Google Scholar]
  35. Sullivan R., Griffin J. D., Simons E. R., Schafer A. I., Meshulam T., Fredette J. P., Maas A. K., Gadenne A. S., Leavitt J. L., Melnick D. A. Effects of recombinant human granulocyte and macrophage colony-stimulating factors on signal transduction pathways in human granulocytes. J Immunol. 1987 Nov 15;139(10):3422–3430. [PubMed] [Google Scholar]
  36. Tokuda H., Masuda S., Takakura Y., Sezaki H., Hashida M. Specific uptake of succinylated proteins via a scavenger receptor-mediated mechanism in cultured brain microvessel endothelial cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):18–24. doi: 10.1006/bbrc.1993.2210. [DOI] [PubMed] [Google Scholar]
  37. Watari K., Asano S., Shirafuji N., Kodo H., Ozawa K., Takaku F., Kamachi S. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood. 1989 Jan;73(1):117–122. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES