Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 15;102(4):671–678. doi: 10.1172/JCI3125

Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy.

M Comabella 1, K Balashov 1, S Issazadeh 1, D Smith 1, H L Weiner 1, S J Khoury 1
PMCID: PMC508928  PMID: 9710434

Abstract

Multiple sclerosis is postulated to be a Th1-type cell-mediated autoimmune disease. We investigated cytokine profiles in patients with progressive multiple sclerosis by using intracytoplasmic staining. We found increased IL-12 production by monocytes and increased IFN-gamma production by T cells in untreated patients as compared with controls. In patients treated with methotrexate, methylprednisolone, or cyclophosphamide/methylprednisolone (CY/MP), only CY/MP treatment normalized the elevated IL-12 production. Furthermore, CY/MP-treated patients had decreased IFN-gamma and increased IL-4, IL-5, and TGF-beta expression. Patients followed prospectively before and after starting CY/MP treatment showed a gradual decrease in IL-12 and IFN-gamma production and an increase in IL-4 and IL-5. In vitro, addition of 4-hydroperoxycyclophosphamide, a metabolite of cyclophosphamide decreased IL-12 production in mononuclear cell cultures. When patients were classified as having active or stable disease, IL-12 production correlated with disease activity. In summary, our results demonstrate a Th1-type cytokine bias in peripheral blood mononuclear cells of untreated progressive MS patients that is reversed by CY/MP treatment and is associated with Th2 and TGF-beta (Th3) type responses. These findings provide a basis for immune monitoring of patients with MS and suggest that treatments that downregulate IL-12 may prove to be beneficial in progressive MS.

Full Text

The Full Text of this article is available as a PDF (214.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando D. G., Clayton J., Kono D., Urban J. L., Sercarz E. E. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989 Nov;124(1):132–143. doi: 10.1016/0008-8749(89)90117-2. [DOI] [PubMed] [Google Scholar]
  2. Auphan N., DiDonato J. A., Rosette C., Helmberg A., Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995 Oct 13;270(5234):286–290. doi: 10.1126/science.270.5234.286. [DOI] [PubMed] [Google Scholar]
  3. Balashov K. E., Smith D. R., Khoury S. J., Hafler D. A., Weiner H. L. Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):599–603. doi: 10.1073/pnas.94.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck J., Rondot P., Catinot L., Falcoff E., Kirchner H., Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand. 1988 Oct;78(4):318–323. doi: 10.1111/j.1600-0404.1988.tb03663.x. [DOI] [PubMed] [Google Scholar]
  5. Blotta M. H., DeKruyff R. H., Umetsu D. T. Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J Immunol. 1997 Jun 15;158(12):5589–5595. [PubMed] [Google Scholar]
  6. Brinkman C. J., Nillesen W. M., Hommes O. R. The effect of cyclophosphamide on T lymphocytes and T lymphocyte subsets in patients with chronic progressive multiple sclerosis. Acta Neurol Scand. 1984 Feb;69(2):90–96. doi: 10.1111/j.1600-0404.1984.tb07784.x. [DOI] [PubMed] [Google Scholar]
  7. Cella M., Scheidegger D., Palmer-Lehmann K., Lane P., Lanzavecchia A., Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996 Aug 1;184(2):747–752. doi: 10.1084/jem.184.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Y., Hancock W. W., Marks R., Gonnella P., Weiner H. L. Mechanisms of recovery from experimental autoimmune encephalomyelitis: T cell deletion and immune deviation in myelin basic protein T cell receptor transgenic mice. J Neuroimmunol. 1998 Mar 1;82(2):149–159. doi: 10.1016/s0165-5728(97)00193-8. [DOI] [PubMed] [Google Scholar]
  9. Chen Y., Kuchroo V. K., Inobe J., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994 Aug 26;265(5176):1237–1240. doi: 10.1126/science.7520605. [DOI] [PubMed] [Google Scholar]
  10. Crucian B., Dunne P., Friedman H., Ragsdale R., Pross S., Widen R. Detection of altered T helper 1 and T helper 2 cytokine production by peripheral blood mononuclear cells in patients with multiple sclerosis utilizing intracellular cytokine detection by flow cytometry and surface marker analysis. Clin Diagn Lab Immunol. 1996 Jul;3(4):411–416. doi: 10.1128/cdli.3.4.411-416.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeKruyff R. H., Gieni R. S., Umetsu D. T. Antigen-driven but not lipopolysaccharide-driven IL-12 production in macrophages requires triggering of CD40. J Immunol. 1997 Jan 1;158(1):359–366. [PubMed] [Google Scholar]
  12. Diamantstein T., Klos M., Hahn H., Kaufmann S. H. Direct in vitro evidence for different susceptibilities to 4-hydroperoxycyclophosphamide of antigen-primed T cells regulating humoral and cell-mediated immune responses to sheep erythrocytes: a possible explanation for the inverse action of cyclophosphamide on humoral and cell-mediated immune responses. J Immunol. 1981 May;126(5):1717–1719. [PubMed] [Google Scholar]
  13. Hafler D. A., Orav J., Gertz R., Stazzone L., Weiner H. L. Immunologic effects of cyclophosphamide/ACTH in patients with chronic progressive multiple sclerosis. J Neuroimmunol. 1991 May;32(2):149–158. doi: 10.1016/0165-5728(91)90007-t. [DOI] [PubMed] [Google Scholar]
  14. Hauser S. L., Dawson D. M., Lehrich J. R., Beal M. F., Kevy S. V., Propper R. D., Mills J. A., Weiner H. L. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med. 1983 Jan 27;308(4):173–180. doi: 10.1056/NEJM198301273080401. [DOI] [PubMed] [Google Scholar]
  15. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  16. Issazadeh S., Ljungdahl A., Höjeberg B., Mustafa M., Olsson T. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta. J Neuroimmunol. 1995 Sep;61(2):205–212. doi: 10.1016/0165-5728(95)00100-g. [DOI] [PubMed] [Google Scholar]
  17. Johns L. D., Flanders K. C., Ranges G. E., Sriram S. Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-beta 1. J Immunol. 1991 Sep 15;147(6):1792–1796. [PubMed] [Google Scholar]
  18. Jung T., Schauer U., Heusser C., Neumann C., Rieger C. Detection of intracellular cytokines by flow cytometry. J Immunol Methods. 1993 Feb 26;159(1-2):197–207. doi: 10.1016/0022-1759(93)90158-4. [DOI] [PubMed] [Google Scholar]
  19. Kaufmann S. H., Hahn H., Diamantstein T. Relative susceptibilities of T cell subsets involved in delayed-type hypersensitivity to sheep red blood cells to the in vitro action of 4-hydroperoxycyclophosphamide. J Immunol. 1980 Sep;125(3):1104–1108. [PubMed] [Google Scholar]
  20. Kennedy M. K., Torrance D. S., Picha K. S., Mohler K. M. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol. 1992 Oct 1;149(7):2496–2505. [PubMed] [Google Scholar]
  21. Khoury S. J., Hancock W. W., Weiner H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med. 1992 Nov 1;176(5):1355–1364. doi: 10.1084/jem.176.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lamers K. J., Uitdehaag B. M., Hommes O. R., Doesburg W., Wevers R. A., von Geel W. J. The short-term effect of an immunosuppressive treatment on CSF myelin basic protein in chronic progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 1988 Oct;51(10):1334–1337. doi: 10.1136/jnnp.51.10.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leonard J. P., Waldburger K. E., Goldman S. J. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med. 1995 Jan 1;181(1):381–386. doi: 10.1084/jem.181.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lewis C. E. Detecting cytokine production at the single-cell level. Cytokine. 1991 May;3(3):184–188. doi: 10.1016/1043-4666(91)90014-5. [DOI] [PubMed] [Google Scholar]
  25. Link J., Söderström M., Olsson T., Höjeberg B., Ljungdahl A., Link H. Increased transforming growth factor-beta, interleukin-4, and interferon-gamma in multiple sclerosis. Ann Neurol. 1994 Sep;36(3):379–386. doi: 10.1002/ana.410360309. [DOI] [PubMed] [Google Scholar]
  26. Manetti R., Gerosa F., Giudizi M. G., Biagiotti R., Parronchi P., Piccinni M. P., Sampognaro S., Maggi E., Romagnani S., Trinchieri G. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J Exp Med. 1994 Apr 1;179(4):1273–1283. doi: 10.1084/jem.179.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Manetti R., Parronchi P., Giudizi M. G., Piccinni M. P., Maggi E., Trinchieri G., Romagnani S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med. 1993 Apr 1;177(4):1199–1204. doi: 10.1084/jem.177.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marth T., Strober W., Seder R. A., Kelsall B. L. Regulation of transforming growth factor-beta production by interleukin-12. Eur J Immunol. 1997 May;27(5):1213–1220. doi: 10.1002/eji.1830270524. [DOI] [PubMed] [Google Scholar]
  29. Moody D. J., Fahey J. L., Grable E., Ellison G. W., Myers L. W. Administration of monthly pulses of cyclophosphamide in multiple sclerosis patients. Delayed recovery of several immune parameters following discontinuation of long-term cyclophosphamide treatment. J Neuroimmunol. 1987 Mar;14(2):175–182. doi: 10.1016/0165-5728(87)90051-8. [DOI] [PubMed] [Google Scholar]
  30. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  31. Nicoletti F., Patti F., Cocuzza C., Zaccone P., Nicoletti A., Di Marco R., Reggio A. Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol. 1996 Oct;70(1):87–90. doi: 10.1016/s0165-5728(96)00101-4. [DOI] [PubMed] [Google Scholar]
  32. Olsson T. Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev. 1995 Apr;144:245–268. doi: 10.1111/j.1600-065x.1995.tb00072.x. [DOI] [PubMed] [Google Scholar]
  33. Olsson T., Zhi W. W., Höjeberg B., Kostulas V., Jiang Y. P., Anderson G., Ekre H. P., Link H. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest. 1990 Sep;86(3):981–985. doi: 10.1172/JCI114800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Panitch H. S., Hirsch R. L., Haley A. S., Johnson K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987 Apr 18;1(8538):893–895. doi: 10.1016/s0140-6736(87)92863-7. [DOI] [PubMed] [Google Scholar]
  35. Paterson P. Y., Drobish D. G. Cyclophosphamide: effect on experimental allergic encephalomyelitis in Lewis rats. Science. 1969 Jul 11;165(3889):191–192. doi: 10.1126/science.165.3889.191. [DOI] [PubMed] [Google Scholar]
  36. Paterson P. Y., Hanson M. A. Cyclophosphamide inhibition of experimental allergic encephalomyelitis and cellular transfer of the disease in Lewis rats. J Immunol. 1969 Dec;103(6):1311–1316. [PubMed] [Google Scholar]
  37. Prussin C. Cytokine flow cytometry: understanding cytokine biology at the single-cell level. J Clin Immunol. 1997 May;17(3):195–204. doi: 10.1023/a:1027350226435. [DOI] [PubMed] [Google Scholar]
  38. Racke M. K., Bonomo A., Scott D. E., Cannella B., Levine A., Raine C. S., Shevach E. M., Röcken M. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med. 1994 Nov 1;180(5):1961–1966. doi: 10.1084/jem.180.5.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Racke M. K., Dhib-Jalbut S., Cannella B., Albert P. S., Raine C. S., McFarlin D. E. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol. 1991 May 1;146(9):3012–3017. [PubMed] [Google Scholar]
  40. Ramírez F., Fowell D. J., Puklavec M., Simmonds S., Mason D. Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol. 1996 Apr 1;156(7):2406–2412. [PubMed] [Google Scholar]
  41. Scheinman R. I., Cogswell P. C., Lofquist A. K., Baldwin A. S., Jr Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science. 1995 Oct 13;270(5234):283–286. doi: 10.1126/science.270.5234.283. [DOI] [PubMed] [Google Scholar]
  42. Seder R. A., Gazzinelli R., Sher A., Paul W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10188–10192. doi: 10.1073/pnas.90.21.10188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith D. R., Balashov K. E., Hafler D. A., Khoury S. J., Weiner H. L. Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of multiple sclerosis: increased interleukin-4 production and associated eosinophilia. Ann Neurol. 1997 Sep;42(3):313–318. doi: 10.1002/ana.410420307. [DOI] [PubMed] [Google Scholar]
  44. Takashima H., Smith D. R., Fukaura H., Khoury S. J., Hafler D. A., Weiner H. L. Pulse cyclophosphamide plus methylprednisolone induces myelin-antigen-specific IL-4-secreting T cells in multiple sclerosis patients. Clin Immunol Immunopathol. 1998 Jul;88(1):28–34. doi: 10.1006/clin.1998.4558. [DOI] [PubMed] [Google Scholar]
  45. Weiner H. L., Mackin G. A., Orav E. J., Hafler D. A., Dawson D. M., LaPierre Y., Herndon R., Lehrich J. R., Hauser S. L., Turel A. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple Sclerosis Treatment Group. Neurology. 1993 May;43(5):910–918. doi: 10.1212/wnl.43.5.910. [DOI] [PubMed] [Google Scholar]
  46. Weiner H. L. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today. 1997 Jul;18(7):335–343. doi: 10.1016/s0167-5699(97)01053-0. [DOI] [PubMed] [Google Scholar]
  47. Zieg G., Lack G., Harbeck R. J., Gelfand E. W., Leung D. Y. In vivo effects of glucocorticoids on IgE production. J Allergy Clin Immunol. 1994 Aug;94(2 Pt 1):222–230. doi: 10.1016/0091-6749(94)90044-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES