Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 15;102(4):744–753. doi: 10.1172/JCI2720

Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus.

M Mevorach 1, A Giacca 1, Y Aharon 1, M Hawkins 1, H Shamoon 1, L Rossetti 1
PMCID: PMC508937  PMID: 9710443

Abstract

We examined the ability of an equivalent increase in circulating glucose concentrations to inhibit endogenous glucose production (EGP) and to stimulate glucose metabolism in patients with Type 2 diabetes mellitus (DM2). Somatostatin was infused in the presence of basal replacements of glucoregulatory hormones and plasma glucose was maintained either at 90 or 180 mg/dl. Overnight low-dose insulin was used to normalize the plasma glucose levels in DM2 before initiation of the study protocol. In the presence of identical and constant plasma insulin, glucagon, and growth hormone concentrations, a doubling of the plasma glucose levels inhibited EGP by 42% and stimulated peripheral glucose uptake by 69% in nondiabetic subjects. However, the same increment in the plasma glucose concentrations failed to lower EGP, and stimulated glucose uptake by only 49% in patients with DM2. The rate of glucose infusion required to maintain the same hyperglycemic plateau was 58% lower in DM2 than in nondiabetic individuals. Despite diminished rates of total glucose uptake during hyperglycemia, the ability of glucose per se (at basal insulin) to stimulate whole body glycogen synthesis (glucose uptake minus glycolysis) was comparable in DM2 and in nondiabetic subjects. To examine the mechanisms responsible for the lack of inhibition of EGP by hyperglycemia in DM2 we also assessed the rates of total glucose output (TGO), i.e., flux through glucose-6-phosphatase, and the rate of glucose cycling in a subgroup of the study subjects. In the nondiabetic group, hyperglycemia inhibited TGO by 35%, while glucose cycling did not change significantly. In DM2, neither TGO or glucose cycling was affected by hyperglycemia. The lack of increase in glucose cycling in the face of a doubling in circulating glucose concentrations suggested that hyperglycemia at basal insulin inhibits glucose-6-phosphatase activity in vivo. Conversely, the lack of increase in glucose cycling in the presence of hyperglycemia and unchanged TGO suggest that the increase in the plasma glucose concentration failed to enhance the flux through glucokinase in DM2. In summary, both lack of inhibition of EGP and diminished stimulation of glucose uptake contribute to impaired glucose effectiveness in DM2. The abilities of glucose at basal insulin to both increase the flux through glucokinase and to inhibit the flux through glucose-6-phosphatase are impaired in DM2. Conversely, glycogen synthesis is exquisitely sensitive to changes in plasma glucose in patients with DM2.

Full Text

The Full Text of this article is available as a PDF (197.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ader M., Ni T. C., Bergman R. N. Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components. J Clin Invest. 1997 Mar 15;99(6):1187–1199. doi: 10.1172/JCI119275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ader M., Pacini G., Yang Y. J., Bergman R. N. Importance of glucose per se to intravenous glucose tolerance. Comparison of the minimal-model prediction with direct measurements. Diabetes. 1985 Nov;34(11):1092–1103. doi: 10.2337/diab.34.11.1092. [DOI] [PubMed] [Google Scholar]
  3. Alzaid A. A., Dinneen S. F., Turk D. J., Caumo A., Cobelli C., Rizza R. A. Assessment of insulin action and glucose effectiveness in diabetic and nondiabetic humans. J Clin Invest. 1994 Dec;94(6):2341–2348. doi: 10.1172/JCI117599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baron A. D., Brechtel G., Wallace P., Edelman S. V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988 Dec;255(6 Pt 1):E769–E774. doi: 10.1152/ajpendo.1988.255.6.E769. [DOI] [PubMed] [Google Scholar]
  5. Barzilai N., Hawkins M., Angelov I., Hu M., Rossetti L. Glucosamine-induced inhibition of liver glucokinase impairs the ability of hyperglycemia to suppress endogenous glucose production. Diabetes. 1996 Oct;45(10):1329–1335. doi: 10.2337/diab.45.10.1329. [DOI] [PubMed] [Google Scholar]
  6. Basu A., Caumo A., Bettini F., Gelisio A., Alzaid A., Cobelli C., Rizza R. A. Impaired basal glucose effectiveness in NIDDM: contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol. Diabetes. 1997 Mar;46(3):421–432. doi: 10.2337/diab.46.3.421. [DOI] [PubMed] [Google Scholar]
  7. Bell P. M., Firth R. G., Rizza R. A. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [23H]-, [33H]-, and [614C]glucose. Diabetes. 1986 Jun;35(6):642–648. doi: 10.2337/diab.35.6.642. [DOI] [PubMed] [Google Scholar]
  8. Boden G., Chen X., Ruiz J., White J. V., Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994 Jun;93(6):2438–2446. doi: 10.1172/JCI117252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bogardus C., Lillioja S., Howard B. V., Reaven G., Mott D. Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects. J Clin Invest. 1984 Oct;74(4):1238–1246. doi: 10.1172/JCI111533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bogardus C., Lillioja S., Stone K., Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984 Apr;73(4):1185–1190. doi: 10.1172/JCI111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Capaldo B., Santoro D., Riccardi G., Perrotti N., Saccà L. Direct evidence for a stimulatory effect of hyperglycemia per se on peripheral glucose disposal in type II diabetes. J Clin Invest. 1986 Apr;77(4):1285–1290. doi: 10.1172/JCI112432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen N., Halberstam M., Shlimovich P., Chang C. J., Shamoon H., Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995 Jun;95(6):2501–2509. doi: 10.1172/JCI117951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DeFronzo R. A., Ferrannini E., Hendler R., Felig P., Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes. 1983 Jan;32(1):35–45. doi: 10.2337/diab.32.1.35. [DOI] [PubMed] [Google Scholar]
  14. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  15. Del Prato S., Bonadonna R. C., Bonora E., Gulli G., Solini A., Shank M., DeFronzo R. A. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 1993 Feb;91(2):484–494. doi: 10.1172/JCI116226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dunn A., Katz J., Golden S., Chenoweth M. Estimation of glucose turnover and recycling in rabbits using various [3H, 14C]glucose labels. Am J Physiol. 1976 Apr;230(4):1159–1162. doi: 10.1152/ajplegacy.1976.230.4.1159. [DOI] [PubMed] [Google Scholar]
  17. Efendic S., Karlander S., Vranic M. Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity. J Clin Invest. 1988 Jun;81(6):1953–1961. doi: 10.1172/JCI113543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Farrace S., Rossetti L. Hyperglycemia markedly enhances skeletal muscle glycogen synthase activity in diabetic, but not in normal conscious rats. Diabetes. 1992 Nov;41(11):1453–1463. doi: 10.2337/diab.41.11.1453. [DOI] [PubMed] [Google Scholar]
  19. Felig P., Wahren J., Hendler R. Influence of maturity-onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes. 1978 Feb;27(2):121–126. doi: 10.2337/diab.27.2.121. [DOI] [PubMed] [Google Scholar]
  20. Ferrannini E., Locatelli L., Jequier E., Felber J. P. Differential effects of insulin and hyperglycemia on intracellular glucose disposition in humans. Metabolism. 1989 May;38(5):459–465. doi: 10.1016/0026-0495(89)90199-6. [DOI] [PubMed] [Google Scholar]
  21. Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
  22. Firth R. G., Bell P. M., Marsh H. M., Hansen I., Rizza R. A. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues. J Clin Invest. 1986 May;77(5):1525–1532. doi: 10.1172/JCI112467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Glinsmann W. H., Hern E. P., Lynch A. Intrinsic regulation of glucose output by rat liver. Am J Physiol. 1969 Apr;216(4):698–703. doi: 10.1152/ajplegacy.1969.216.4.698. [DOI] [PubMed] [Google Scholar]
  24. Halberstam M., Cohen N., Shlimovich P., Rossetti L., Shamoon H. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. 1996 May;45(5):659–666. doi: 10.2337/diab.45.5.659. [DOI] [PubMed] [Google Scholar]
  25. Kelley D. E., Mandarino L. J. Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J Clin Invest. 1990 Dec;86(6):1999–2007. doi: 10.1172/JCI114935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kimmerling G., Javorski C., Olefsky J. M., Reaven G. M. Locating the site(s) of insulin resistance in patients with nonketotic diabetes mellitus. Diabetes. 1976 Aug;25(8):673–678. doi: 10.2337/diab.25.8.673. [DOI] [PubMed] [Google Scholar]
  27. Kolterman O. G., Gray R. S., Griffin J., Burstein P., Insel J., Scarlett J. A., Olefsky J. M. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest. 1981 Oct;68(4):957–969. doi: 10.1172/JCI110350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lewis G. F., Vranic M., Harley P., Giacca A. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes. 1997 Jul;46(7):1111–1119. doi: 10.2337/diab.46.7.1111. [DOI] [PubMed] [Google Scholar]
  29. Lillioja S., Mott D. M., Zawadzki J. K., Young A. A., Abbott W. G., Bogardus C. Glucose storage is a major determinant of in vivo "insulin resistance" in subjects with normal glucose tolerance. J Clin Endocrinol Metab. 1986 May;62(5):922–927. doi: 10.1210/jcem-62-5-922. [DOI] [PubMed] [Google Scholar]
  30. Ludvik B., Nolan J. J., Roberts A., Baloga J., Joyce M., Bell J. M., Olefsky J. M. A noninvasive method to measure splanchnic glucose uptake after oral glucose administration. J Clin Invest. 1995 May;95(5):2232–2238. doi: 10.1172/JCI117913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ludvik B., Nolan J. J., Roberts A., Baloga J., Joyce M., Bell J. M., Olefsky J. M. Evidence for decreased splanchnic glucose uptake after oral glucose administration in non-insulin-dependent diabetes mellitus. J Clin Invest. 1997 Nov 1;100(9):2354–2361. doi: 10.1172/JCI119775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miyoshi H., Shulman G. I., Peters E. J., Wolfe M. H., Elahi D., Wolfe R. R. Hormonal control of substrate cycling in humans. J Clin Invest. 1988 May;81(5):1545–1555. doi: 10.1172/JCI113487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Puhakainen I., Yki-Järvinen H. Inhibition of lipolysis decreases lipid oxidation and gluconeogenesis from lactate but not fasting hyperglycemia or total hepatic glucose production in NIDDM. Diabetes. 1993 Dec;42(12):1694–1699. doi: 10.2337/diab.42.12.1694. [DOI] [PubMed] [Google Scholar]
  34. Rebrin K., Steil G. M., Getty L., Bergman R. N. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes. 1995 Sep;44(9):1038–1045. doi: 10.2337/diab.44.9.1038. [DOI] [PubMed] [Google Scholar]
  35. Rebrin K., Steil G. M., Mittelman S. D., Bergman R. N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996 Aug 1;98(3):741–749. doi: 10.1172/JCI118846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rizza R. A., Mandarino L. J., Gerich J. E. Mechanism and significance of insulin resistance in non-insulin-dependent diabetes mellitus. Diabetes. 1981 Dec;30(12):990–995. doi: 10.2337/diab.30.12.990. [DOI] [PubMed] [Google Scholar]
  37. Rossetti L., Chen W., Hu M., Hawkins M., Barzilai N., Efrat S. Abnormal regulation of HGP by hyperglycemia in mice with a disrupted glucokinase allele. Am J Physiol. 1997 Oct;273(4 Pt 1):E743–E750. doi: 10.1152/ajpendo.1997.273.4.E743. [DOI] [PubMed] [Google Scholar]
  38. Rossetti L., Giaccari A., Barzilai N., Howard K., Sebel G., Hu M. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest. 1993 Sep;92(3):1126–1134. doi: 10.1172/JCI116681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rossetti L., Giaccari A. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats. J Clin Invest. 1990 Jun;85(6):1785–1792. doi: 10.1172/JCI114636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rossetti L., Lee Y. T., Ruiz J., Aldridge S. C., Shamoon H., Boden G. Quantitation of glycolysis and skeletal muscle glycogen synthesis in humans. Am J Physiol. 1993 Nov;265(5 Pt 1):E761–E769. doi: 10.1152/ajpendo.1993.265.5.E761. [DOI] [PubMed] [Google Scholar]
  41. STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
  42. Saad M. F., Anderson R. L., Laws A., Watanabe R. M., Kades W. W., Chen Y. D., Sands R. E., Pei D., Savage P. J., Bergman R. N. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study. Diabetes. 1994 Sep;43(9):1114–1121. doi: 10.2337/diab.43.9.1114. [DOI] [PubMed] [Google Scholar]
  43. Sacca L., Hendler R., Sherwin R. S. Hyperglycemia inhibits glucose production in man independent of changes in glucoregulatory hormones. J Clin Endocrinol Metab. 1978 Nov;47(5):1160–1163. doi: 10.1210/jcem-47-5-1160. [DOI] [PubMed] [Google Scholar]
  44. Shamoon H., Friedman S., Canton C., Zacharowicz L., Hu M., Rossetti L. Increased epinephrine and skeletal muscle responses to hypoglycemia in non-insulin-dependent diabetes mellitus. J Clin Invest. 1994 Jun;93(6):2562–2571. doi: 10.1172/JCI117267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shi Z. Q., Giacca A., Fisher S., Vidal H., van de Werve G., Vranic M. Importance of substrate changes in the decrease of hepatic glucose cycling during insulin infusion and declining glycemia in the depancreatized dog. Diabetes. 1994 Nov;43(11):1284–1290. doi: 10.2337/diabetes.43.11.1284. [DOI] [PubMed] [Google Scholar]
  46. Shulman G. I., Lacy W. W., Liljenquist J. E., Keller U., Williams P. E., Cherrington A. D. Effect of glucose, independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog. J Clin Invest. 1980 Feb;65(2):496–505. doi: 10.1172/JCI109693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shulman G. I., Liljenquist J. E., Williams P. E., Lacy W. W., Cherrington A. D. Glucose disposal during insulinopenia in somatostatin-treated dogs. The roles of glucose and glucagon. J Clin Invest. 1978 Aug;62(2):487–491. doi: 10.1172/JCI109150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
  49. Sindelar D. K., Chu C. A., Rohlie M., Neal D. W., Swift L. L., Cherrington A. D. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes. 1997 Feb;46(2):187–196. doi: 10.2337/diab.46.2.187. [DOI] [PubMed] [Google Scholar]
  50. Sotsky M. J., Shilo S., Shamoon H. Regulation of counterregulatory hormone secretion in man during exercise and hypoglycemia. J Clin Endocrinol Metab. 1989 Jan;68(1):9–16. doi: 10.1210/jcem-68-1-9. [DOI] [PubMed] [Google Scholar]
  51. Thorburn A. W., Gumbiner B., Bulacan F., Wallace P., Henry R. R. Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake. J Clin Invest. 1990 Feb;85(2):522–529. doi: 10.1172/JCI114468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vaag A., Damsbo P., Hother-Nielsen O., Beck-Nielsen H. Hyperglycaemia compensates for the defects in insulin-mediated glucose metabolism and in the activation of glycogen synthase in the skeletal muscle of patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Jan;35(1):80–88. doi: 10.1007/BF00400856. [DOI] [PubMed] [Google Scholar]
  53. Welch S., Gebhart S. S., Bergman R. N., Phillips L. S. Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects. J Clin Endocrinol Metab. 1990 Dec;71(6):1508–1518. doi: 10.1210/jcem-71-6-1508. [DOI] [PubMed] [Google Scholar]
  54. Wright K. S., Beck-Nielsen H., Kolterman O. G., Mandarino L. J. Decreased activation of skeletal muscle glycogen synthase by mixed-meal ingestion in NIDDM. Diabetes. 1988 Apr;37(4):436–440. doi: 10.2337/diab.37.4.436. [DOI] [PubMed] [Google Scholar]
  55. Young A. A., Bogardus C., Wolfe-Lopez D., Mott D. M. Muscle glycogen synthesis and disposition of infused glucose in humans with reduced rates of insulin-mediated carbohydrate storage. Diabetes. 1988 Mar;37(3):303–308. doi: 10.2337/diab.37.3.303. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES