Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 15;102(4):764–774. doi: 10.1172/JCI942

Inhibitory effect of glucagon-like peptide-1 on small bowel motility. Fasting but not fed motility inhibited via nitric oxide independently of insulin and somatostatin.

T Tolessa 1, M Gutniak 1, J J Holst 1, S Efendic 1, P M Hellström 1
PMCID: PMC508939  PMID: 9710445

Abstract

Effects of glucagon-like peptide-1 (GLP-1)(7-36)amide on fasted and fed motility in the rat small intestine were investigated in relation to its dependence on nitric oxide (NO), insulin, and somatostatin. Small bowel electromyography was performed using bipolar electrodes implanted 15, 25, and 35 cm distal to pylorus, and transit was studied with a radioactive marker. In the fasted state, GLP-1 (5-20 pmol kg-1min-1), reaching physiological plasma levels, prolonged the migrating myoelectric complex (MMC) cycle length along with slowed transit. This effect was antagonized by exendin(9-39)amide. The NO synthase inhibitor Nomega-nitro- L-arginine (L-NNA) also blocked the response to GLP-1, whereas L-arginine restored the response. Insulin (80-200 pmol kg-1min-1) induced irregular spiking, whereas somatostatin (100-500 pmol kg-1min-1) increased the MMC cycle length, independently of NO. In the fed state, GLP-1 (20-40 pmol kg-1min-1) reduced motility, an inhibition unaffected by L-NNA, whereas motility was stimulated by exendin(9-39)amide. Infusion of GLP-1 (20-100 pmol kg-1min-1) did not affect plasma insulin, but somatostatin was increased. In conclusion, GLP-1 seems to inhibit small bowel motility directly via the GLP-1 receptor. Inhibition of fasting motility is dependent of NO and not mediated via insulin or somatostatin, whereas inhibition of fed motility is independent of NO.

Full Text

The Full Text of this article is available as a PDF (475.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Saffar A., Hellström P. M., Nylander G. Correlation between peptide YY-induced myoelectric activity and transit of small-intestinal contents in rats. Scand J Gastroenterol. 1985 Jun;20(5):577–582. doi: 10.3109/00365528509089699. [DOI] [PubMed] [Google Scholar]
  2. Al-Saffar A., Hellström P. M., Nylander G., Rosell S. Influence of fasting and bombesin-induced myoelectric activity on the transit of small-intestinal contents in the rat. Scand J Gastroenterol. 1984 Jun;19(4):541–546. [PubMed] [Google Scholar]
  3. Brown J. C., Dryburgh J. R., Ross S. A., Dupré J. Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res. 1975;31:487–532. doi: 10.1016/b978-0-12-571131-9.50017-7. [DOI] [PubMed] [Google Scholar]
  4. Bränström R., Hellström P. M. Characteristics of fasting and fed myoelectric activity in rat small intestine: evaluation by computer analysis. Acta Physiol Scand. 1996 Sep;158(1):53–62. doi: 10.1046/j.1365-201X.1996.524292000.x. [DOI] [PubMed] [Google Scholar]
  5. Bult H., Boeckxstaens G. E., Pelckmans P. A., Jordaens F. H., Van Maercke Y. M., Herman A. G. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990 May 24;345(6273):346–347. doi: 10.1038/345346a0. [DOI] [PubMed] [Google Scholar]
  6. D'Alessio D. A., Fujimoto W. Y., Ensinck J. W. Effects of glucagonlike peptide I-(7-36) on release of insulin, glucagon, and somatostatin by rat pancreatic islet cell monolayer cultures. Diabetes. 1989 Dec;38(12):1534–1538. doi: 10.2337/diab.38.12.1534. [DOI] [PubMed] [Google Scholar]
  7. Deacon C. F., Johnsen A. H., Holst J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 1995 Mar;80(3):952–957. doi: 10.1210/jcem.80.3.7883856. [DOI] [PubMed] [Google Scholar]
  8. Gefel D., Hendrick G. K., Mojsov S., Habener J., Weir G. C. Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology. 1990 Apr;126(4):2164–2168. doi: 10.1210/endo-126-4-2164. [DOI] [PubMed] [Google Scholar]
  9. Gregor M., Stallmach A., Menge H., Riecken E. O. The role of gut-glucagon-like immunoreactants in the control of gastrointestinal epithelial cell renewal. Digestion. 1990;46 (Suppl 2):59–65. doi: 10.1159/000200368. [DOI] [PubMed] [Google Scholar]
  10. Grill V., Gutniak M., Roovete A., Efendić S. A stimulating effect of glucose on somatostatin release is impaired in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1984 Aug;59(2):293–297. doi: 10.1210/jcem-59-2-293. [DOI] [PubMed] [Google Scholar]
  11. Grill V., Pigon J., Hartling S. G., Binder C., Efendic S. Effects of dexamethasone on glucose-induced insulin and proinsulin release in low and high insulin responders. Metabolism. 1990 Mar;39(3):251–258. doi: 10.1016/0026-0495(90)90043-c. [DOI] [PubMed] [Google Scholar]
  12. Gutniak M. K., Juntti-Berggren L., Hellström P. M., Guenifi A., Holst J. J., Efendic S. Glucagon-like peptide I enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care. 1996 Aug;19(8):857–863. doi: 10.2337/diacare.19.8.857. [DOI] [PubMed] [Google Scholar]
  13. Gutniak M., Orskov C., Holst J. J., Ahrén B., Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med. 1992 May 14;326(20):1316–1322. doi: 10.1056/NEJM199205143262003. [DOI] [PubMed] [Google Scholar]
  14. HJELM M., DE VERDIERCH C. H. A METHODOLOGICAL STUDY OF THE ENZYMATIC DETERMINATION OF GLUCOSE IN BLOOD. Scand J Clin Lab Invest. 1963;15:415–428. doi: 10.3109/00365516309079764. [DOI] [PubMed] [Google Scholar]
  15. Hellström P. M., Ljung T. Nitrergic inhibition of migrating myoelectric complex in the rat is mediated by vasoactive intestinal peptide. Neurogastroenterol Motil. 1996 Dec;8(4):299–306. doi: 10.1111/j.1365-2982.1996.tb00268.x. [DOI] [PubMed] [Google Scholar]
  16. Holst J. J., Orskov C., Nielsen O. V., Schwartz T. W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987 Jan 26;211(2):169–174. doi: 10.1016/0014-5793(87)81430-8. [DOI] [PubMed] [Google Scholar]
  17. Hostein J., Janssens J., Vantrappen G., Peeters T. L., Vandeweerd M., Leman G. Somatostatin induces ectopic activity fronts of the migrating motor complex via a local intestinal mechanism. Gastroenterology. 1984 Nov;87(5):1004–1008. [PubMed] [Google Scholar]
  18. Iversen H. H., Wiklund N. P., Gustafsson L. E. Nitric oxide-like activity in guinea pig colon as determined by effector responses, bioassay and chemiluminescence analysis. Acta Physiol Scand. 1994 Nov;152(3):315–322. doi: 10.1111/j.1748-1716.1994.tb09811.x. [DOI] [PubMed] [Google Scholar]
  19. Kawai K., Suzuki S., Ohashi S., Mukai H., Ohmori H., Murayama Y., Yamashita K. Comparison of the effects of glucagon-like peptide-1-(1-37) and -(7-37) and glucagon on islet hormone release from isolated perfused canine and rat pancreases. Endocrinology. 1989 Apr;124(4):1768–1773. doi: 10.1210/endo-124-4-1768. [DOI] [PubMed] [Google Scholar]
  20. Kolligs F., Fehmann H. C., Göke R., Göke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes. 1995 Jan;44(1):16–19. doi: 10.2337/diab.44.1.16. [DOI] [PubMed] [Google Scholar]
  21. Komatsu R., Matsuyama T., Namba M., Watanabe N., Itoh H., Kono N., Tarui S. Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7-36)-amide. Diabetes. 1989 Jul;38(7):902–905. doi: 10.2337/diab.38.7.902. [DOI] [PubMed] [Google Scholar]
  22. Kreymann B., Williams G., Ghatei M. A., Bloom S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987 Dec 5;2(8571):1300–1304. doi: 10.1016/s0140-6736(87)91194-9. [DOI] [PubMed] [Google Scholar]
  23. Miller M. S., Galligan J. J., Burks T. F. Accurate measurement of intestinal transit in the rat. J Pharmacol Methods. 1981 Nov;6(3):211–217. doi: 10.1016/0160-5402(81)90110-8. [DOI] [PubMed] [Google Scholar]
  24. Mojsov S., Heinrich G., Wilson I. B., Ravazzola M., Orci L., Habener J. F. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem. 1986 Sep 5;261(25):11880–11889. [PubMed] [Google Scholar]
  25. Mojsov S., Weir G. C., Habener J. F. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987 Feb;79(2):616–619. doi: 10.1172/JCI112855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nauck M. A., Holst J. J., Willms B. Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus. Horm Metab Res. 1997 Sep;29(9):411–416. doi: 10.1055/s-2007-979067. [DOI] [PubMed] [Google Scholar]
  27. Nauck M. A., Holst J. J., Willms B., Schmiegel W. Glucagon-like peptide 1 (GLP-1) as a new therapeutic approach for type 2-diabetes. Exp Clin Endocrinol Diabetes. 1997;105(4):187–195. doi: 10.1055/s-0029-1211750. [DOI] [PubMed] [Google Scholar]
  28. Nauck M. A., Niedereichholz U., Ettler R., Holst J. J., Orskov C., Ritzel R., Schmiegel W. H. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997 Nov;273(5 Pt 1):E981–E988. doi: 10.1152/ajpendo.1997.273.5.E981. [DOI] [PubMed] [Google Scholar]
  29. Novak U., Wilks A., Buell G., McEwen S. Identical mRNA for preproglucagon in pancreas and gut. Eur J Biochem. 1987 May 4;164(3):553–558. doi: 10.1111/j.1432-1033.1987.tb11162.x. [DOI] [PubMed] [Google Scholar]
  30. Orskov C., Holst J. J., Knuhtsen S., Baldissera F. G., Poulsen S. S., Nielsen O. V. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology. 1986 Oct;119(4):1467–1475. doi: 10.1210/endo-119-4-1467. [DOI] [PubMed] [Google Scholar]
  31. Orskov C., Holst J. J., Nielsen O. V. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988 Oct;123(4):2009–2013. doi: 10.1210/endo-123-4-2009. [DOI] [PubMed] [Google Scholar]
  32. Orskov C., Holst J. J., Poulsen S. S., Kirkegaard P. Pancreatic and intestinal processing of proglucagon in man. Diabetologia. 1987 Nov;30(11):874–881. doi: 10.1007/BF00274797. [DOI] [PubMed] [Google Scholar]
  33. Orskov C., Rabenhøj L., Wettergren A., Kofod H., Holst J. J. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994 Apr;43(4):535–539. doi: 10.2337/diab.43.4.535. [DOI] [PubMed] [Google Scholar]
  34. Raufman J. P. Bioactive peptides from lizard venoms. Regul Pept. 1996 Jan 16;61(1):1–18. doi: 10.1016/0167-0115(96)00135-8. [DOI] [PubMed] [Google Scholar]
  35. Rodríguez-Membrilla A., Martínez V., Jiménez M., Goñalons E., Vergara P. Is nitric oxide the final mediator regulating the migrating myoelectric complex cycle? Am J Physiol. 1995 Feb;268(2 Pt 1):G207–G214. doi: 10.1152/ajpgi.1995.268.2.G207. [DOI] [PubMed] [Google Scholar]
  36. Rukebusch M., Fioramonti J. Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology. 1975 Jun;68(6):1500–1508. [PubMed] [Google Scholar]
  37. Rushakoff R. J., Goldfine I. D., Carter J. D., Liddle R. A. Physiological concentrations of cholecystokinin stimulate amino acid-induced insulin release in humans. J Clin Endocrinol Metab. 1987 Sep;65(3):395–401. doi: 10.1210/jcem-65-3-395. [DOI] [PubMed] [Google Scholar]
  38. Sarna S. K., Otterson M. F., Ryan R. P., Cowles V. E. Nitric oxide regulates migrating motor complex cycling and its postprandial disruption. Am J Physiol. 1993 Oct;265(4 Pt 1):G749–G766. doi: 10.1152/ajpgi.1993.265.4.G759. [DOI] [PubMed] [Google Scholar]
  39. Schang J. C., Kelly K. A. Inhibition of canine interdigestive proximal gastric motility by cholecystokinin octapeptide. Am J Physiol. 1981 Mar;240(3):G217–G220. doi: 10.1152/ajpgi.1981.240.3.G217. [DOI] [PubMed] [Google Scholar]
  40. Shima K., Hirota M., Ohboshi C. Effect of glucagon-like peptide-1 on insulin secretion. Regul Pept. 1988 Aug;22(3):245–252. doi: 10.1016/0167-0115(88)90037-7. [DOI] [PubMed] [Google Scholar]
  41. Szecówka J., Lins P. E., Efendić S. Effects of cholecystokinin, gastric inhibitory polypeptide, and secretin on insulin and glucagon secretion in rats. Endocrinology. 1982 Apr;110(4):1268–1272. doi: 10.1210/endo-110-4-1268. [DOI] [PubMed] [Google Scholar]
  42. Wettergren A., Schjoldager B., Mortensen P. E., Myhre J., Christiansen J., Holst J. J. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993 Apr;38(4):665–673. doi: 10.1007/BF01316798. [DOI] [PubMed] [Google Scholar]
  43. von der Ohe M., Layer P., Wollny C., Ensinck J. W., Peeters T. L., Beglinger C., Goebell H. Somatostatin 28 and coupling of human interdigestive intestinal motility and pancreatic secretion. Gastroenterology. 1992 Sep;103(3):974–981. doi: 10.1016/0016-5085(92)90031-s. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES