Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 15;102(4):783–791. doi: 10.1172/JCI2425

Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin.

A J Barber 1, E Lieth 1, S A Khin 1, D A Antonetti 1, A G Buchanan 1, T W Gardner 1
PMCID: PMC508941  PMID: 9710447

Abstract

This study determined whether retinal degeneration during diabetes includes retinal neural cell apoptosis. Image analysis of retinal sections from streptozotocin (STZ) diabetic rats after 7.5 months of STZ diabetes identified 22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, respectively (P < 0. 001). The number of surviving ganglion cells was also reduced by 10% compared to controls (P < 0.001). In situ end labeling of DNA terminal dUTP nick end labeling (TUNEL) identified a 10-fold increase in the frequency of retinal apoptosis in whole-mounted rat retinas after 1, 3, 6, and 12 months of diabetes (P < 0.001, P < 0. 001, P < 0.01, and P < 0.01, respectively). Most TUNEL-positive cells were not associated with blood vessels and did not colocalize with the endothelial cell-specific antigen, von Willebrand factor. Insulin implants significantly reduced the number of TUNEL-positive cells (P < 0.05). The number of TUNEL-positive cells was also increased in retinas from humans with diabetes. These data indicate that retinal neural cell death occurs early in diabetes. This is the first quantitative report of an increase in neural cell apoptosis in the retina during diabetes, and indicates that neurodegeneration is an important component of diabetic retinopathy.

Full Text

The Full Text of this article is available as a PDF (295.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexiades M. R., Cepko C. Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn. 1996 Mar;205(3):293–307. doi: 10.1002/(SICI)1097-0177(199603)205:3<293::AID-AJA9>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  2. Anderson A. J., Su J. H., Cotman C. W. DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci. 1996 Mar 1;16(5):1710–1719. doi: 10.1523/JNEUROSCI.16-05-01710.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLOODWORTH J. M., Jr Diabetic retinopathy. Diabetes. 1962 Jan-Feb;11:1–22. [PubMed] [Google Scholar]
  4. Barres B. A., Schmid R., Sendnter M., Raff M. C. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development. 1993 May;118(1):283–295. doi: 10.1242/dev.118.1.283. [DOI] [PubMed] [Google Scholar]
  5. Büchi E. R. Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res. 1992 Oct;55(4):605–613. doi: 10.1016/s0014-4835(05)80173-3. [DOI] [PubMed] [Google Scholar]
  6. Chalmers-Redman R. M., Fraser A. D., Ju W. Y., Wadia J., Tatton N. A., Tatton W. G. Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol. 1997;40:1–25. doi: 10.1016/s0074-7742(08)60713-8. [DOI] [PubMed] [Google Scholar]
  7. Chihara E., Matsuoka T., Ogura Y., Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology. 1993 Aug;100(8):1147–1151. doi: 10.1016/s0161-6420(93)31513-7. [DOI] [PubMed] [Google Scholar]
  8. Enea N. A., Hollis T. M., Kern J. A., Gardner T. W. Histamine H1 receptors mediate increased blood-retinal barrier permeability in experimental diabetes. Arch Ophthalmol. 1989 Feb;107(2):270–274. doi: 10.1001/archopht.1989.01070010276036. [DOI] [PubMed] [Google Scholar]
  9. Engerman R. L., Kern T. S. Retinopathy in animal models of diabetes. Diabetes Metab Rev. 1995 Jul;11(2):109–120. doi: 10.1002/dmr.5610110203. [DOI] [PubMed] [Google Scholar]
  10. Gardner T. W., Lieth E., Khin S. A., Barber A. J., Bonsall D. J., Lesher T., Rice K., Brennan W. A., Jr Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997 Oct;38(11):2423–2427. [PubMed] [Google Scholar]
  11. Gardner T. W., Miller M. L., Cunningham D., Blankenship G. W. The retinal depression sign in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 1995 Oct;233(10):617–620. doi: 10.1007/BF00185281. [DOI] [PubMed] [Google Scholar]
  12. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes W. F. Quantitation of ischemic damage in the rat retina. Exp Eye Res. 1991 Nov;53(5):573–582. doi: 10.1016/0014-4835(91)90215-z. [DOI] [PubMed] [Google Scholar]
  14. Iseki S. DNA strand breaks in rat tissues as detected by in situ nick translation. Exp Cell Res. 1986 Dec;167(2):311–326. doi: 10.1016/0014-4827(86)90172-2. [DOI] [PubMed] [Google Scholar]
  15. Janzer R. C., Raff M. C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature. 1987 Jan 15;325(6101):253–257. doi: 10.1038/325253a0. [DOI] [PubMed] [Google Scholar]
  16. Jonas E. A., Knox R. J., Smith T. C., Wayne N. L., Connor J. A., Kaczmarek L. K. Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion. Nature. 1997 Jan 23;385(6614):343–346. doi: 10.1038/385343a0. [DOI] [PubMed] [Google Scholar]
  17. KUWABARA T., COGAN D. G. Studies of retinal vascular patterns. I. Normal architecture. Arch Ophthalmol. 1960 Dec;64:904–911. doi: 10.1001/archopht.1960.01840010906012. [DOI] [PubMed] [Google Scholar]
  18. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerrigan L. A., Zack D. J., Quigley H. A., Smith S. D., Pease M. E. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol. 1997 Aug;115(8):1031–1035. doi: 10.1001/archopht.1997.01100160201010. [DOI] [PubMed] [Google Scholar]
  20. Kuroiwa S., Katai N., Shibuki H., Kurokawa T., Umihira J., Nikaido T., Kametani K., Yoshimura N. Expression of cell cycle-related genes in dying cells in retinal ischemic injury. Invest Ophthalmol Vis Sci. 1998 Mar;39(3):610–617. [PubMed] [Google Scholar]
  21. Kyprianou N., English H. F., Isaacs J. T. Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate. 1988;13(2):103–117. doi: 10.1002/pros.2990130203. [DOI] [PubMed] [Google Scholar]
  22. Levin L. A., Louhab A. Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy. Arch Ophthalmol. 1996 Apr;114(4):488–491. doi: 10.1001/archopht.1996.01100130484027. [DOI] [PubMed] [Google Scholar]
  23. Lieth E., Barber A. J., Xu B., Dice C., Ratz M. J., Tanase D., Strother J. M. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998 May;47(5):815–820. doi: 10.2337/diabetes.47.5.815. [DOI] [PubMed] [Google Scholar]
  24. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
  25. Meyer-Franke A., Kaplan M. R., Pfrieger F. W., Barres B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron. 1995 Oct;15(4):805–819. doi: 10.1016/0896-6273(95)90172-8. [DOI] [PubMed] [Google Scholar]
  26. Mizutani M., Gerhardinger C., Lorenzi M. Müller cell changes in human diabetic retinopathy. Diabetes. 1998 Mar;47(3):445–449. doi: 10.2337/diabetes.47.3.445. [DOI] [PubMed] [Google Scholar]
  27. Mizutani M., Kern T. S., Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996 Jun 15;97(12):2883–2890. doi: 10.1172/JCI118746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mochizuki H., Goto K., Mori H., Mizuno Y. Histochemical detection of apoptosis in Parkinson's disease. J Neurol Sci. 1996 May;137(2):120–123. doi: 10.1016/0022-510x(95)00336-z. [DOI] [PubMed] [Google Scholar]
  29. Ohira A., de Juan E., Jr Characterization of glial involvement in proliferative diabetic retinopathy. Ophthalmologica. 1990;201(4):187–195. doi: 10.1159/000310150. [DOI] [PubMed] [Google Scholar]
  30. Petito C. K., Roberts B. Effect of postmortem interval on in situ end-labeling of DNA oligonucleosomes. J Neuropathol Exp Neurol. 1995 Nov;54(6):761–765. doi: 10.1097/00005072-199511000-00002. [DOI] [PubMed] [Google Scholar]
  31. Petito C. K., Roberts B. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol. 1995 May;146(5):1121–1130. [PMC free article] [PubMed] [Google Scholar]
  32. Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., Jacobson M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993 Oct 29;262(5134):695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
  33. Scott T. M., Foote J., Peat B., Galway G. Vascular and neural changes in the rat optic nerve following induction of diabetes with streptozotocin. J Anat. 1986 Feb;144:145–152. [PMC free article] [PubMed] [Google Scholar]
  34. Su J. H., Anderson A. J., Cummings B. J., Cotman C. W. Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport. 1994 Dec 20;5(18):2529–2533. doi: 10.1097/00001756-199412000-00031. [DOI] [PubMed] [Google Scholar]
  35. Versaux-Botteri C., Martin-Martinelli E., Nguyen-Legros J., Geffard M., Vigny A., Denoroy L. Regional specialization of the rat retina: catecholamine-containing amacrine cell characterization and distribution. J Comp Neurol. 1986 Jan 15;243(3):422–433. doi: 10.1002/cne.902430311. [DOI] [PubMed] [Google Scholar]
  36. Voll C. L., Auer R. N. Insulin attenuates ischemic brain damage independent of its hypoglycemic effect. J Cereb Blood Flow Metab. 1991 Nov;11(6):1006–1014. doi: 10.1038/jcbfm.1991.168. [DOI] [PubMed] [Google Scholar]
  37. WOLTER J. R. Diabetic retinopathy. Am J Ophthalmol. 1961 May;51:1123–1141. doi: 10.1016/0002-9394(61)91802-5. [DOI] [PubMed] [Google Scholar]
  38. Wijsman J. H., Jonker R. R., Keijzer R., van de Velde C. J., Cornelisse C. J., van Dierendonck J. H. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem. 1993 Jan;41(1):7–12. doi: 10.1177/41.1.7678025. [DOI] [PubMed] [Google Scholar]
  39. Wong P. Apoptosis, retinitis pigmentosa, and degeneration. Biochem Cell Biol. 1994 Nov-Dec;72(11-12):489–498. doi: 10.1139/o94-066. [DOI] [PubMed] [Google Scholar]
  40. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  41. Yamaguchi T., Keino K., Fukuda J. The effect of insulin and insulin-like growth factor-1 on the expression of calretinin and calbindin D-28k in rat embryonic neurons in culture. Neurochem Int. 1995 Mar;26(3):255–262. doi: 10.1016/0197-0186(94)00127-g. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES