Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Aug 15;102(4):828–836. doi: 10.1172/JCI2450

A mesangium-predominant gene, megsin, is a new serpin upregulated in IgA nephropathy.

T Miyata 1, M Nangaku 1, D Suzuki 1, R Inagi 1, K Uragami 1, H Sakai 1, K Okubo 1, K Kurokawa 1
PMCID: PMC508946  PMID: 9710452

Abstract

Mesangial cells play an important role in maintaining a structure and function of the glomerulus and in the pathogenesis of glomerular diseases. To identify a specific gene expressed in human mesangial cells, we used a rapid large-scale DNA sequencing and computerized data processing to compare the transcripts in cultured human mesangial cells with various different cells and organs. Using this novel approach, we discovered a new mesangium-predominant gene termed "megsin." We obtained a full-length cDNA clone of megsin, which coded for a novel 380-amino acid protein. Amino acid homology search revealed that megsin belonged to the serpin (serine protease inhibitor) superfamily. The amino acid sequences in the reactive loop site of megsin showed characteristic features of functional serpins. Northern blot and reverse-transcribed PCR analyses of various tissues and cells demonstrated that megsin was predominantly expressed in human mesangial cells. In situ hybridization studies showed the megsin expression in the mesangium of normal glomeruli, while it increased in the expanded mesangium of glomeruli from patients with IgA nephropathy with the degree of mesangial proliferation. Here we report a new human mesangium-predominant gene that may function as an inhibitory serpin in normal and abnormal biological processes of glomerulus.

Full Text

The Full Text of this article is available as a PDF (448.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aertgeerts K., De Bondt H. L., De Ranter C. J., Declerck P. J. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol. 1995 Oct;2(10):891–897. doi: 10.1038/nsb1095-891. [DOI] [PubMed] [Google Scholar]
  2. Bachmann F. The enigma PAI-2. Gene expression, evolutionary and functional aspects. Thromb Haemost. 1995 Jul;74(1):172–179. [PubMed] [Google Scholar]
  3. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1995. Nucleic Acids Res. 1996 Jan 1;24(1):189–196. doi: 10.1093/nar/24.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrell R. W., Pemberton P. A., Boswell D. R. The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harb Symp Quant Biol. 1987;52:527–535. doi: 10.1101/sqb.1987.052.01.060. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E., Charles I. G. Sequences of the genes and polypeptide precursors for two bovine protease inhibitors. J Mol Biol. 1987 Mar 5;194(1):11–22. doi: 10.1016/0022-2836(87)90711-x. [DOI] [PubMed] [Google Scholar]
  7. Dickinson J. L., Bates E. J., Ferrante A., Antalis T. M. Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. J Biol Chem. 1995 Nov 17;270(46):27894–27904. doi: 10.1074/jbc.270.46.27894. [DOI] [PubMed] [Google Scholar]
  8. Floege J., Radeke H. R., Johnson R. J. Glomerular cells in vitro versus the glomerulus in vivo. Kidney Int. 1994 Feb;45(2):360–368. doi: 10.1038/ki.1994.46. [DOI] [PubMed] [Google Scholar]
  9. Genton C., Kruithof E. K., Schleuning W. D. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells. J Cell Biol. 1987 Mar;104(3):705–712. doi: 10.1083/jcb.104.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gettins P., Patston P. A., Schapira M. The role of conformational change in serpin structure and function. Bioessays. 1993 Jul;15(7):461–467. doi: 10.1002/bies.950150705. [DOI] [PubMed] [Google Scholar]
  11. Hopkins P. C., Whisstock J. Function of maspin. Science. 1994 Sep 23;265(5180):1893–1894. [PubMed] [Google Scholar]
  12. Johnson R. J., Floege J., Yoshimura A., Iida H., Couser W. G., Alpers C. E. The activated mesangial cell: a glomerular "myofibroblast"? J Am Soc Nephrol. 1992 Apr;2(10 Suppl):S190–S197. doi: 10.1681/ASN.V210s190. [DOI] [PubMed] [Google Scholar]
  13. Kruithof E. K., Baker M. S., Bunn C. L. Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood. 1995 Dec 1;86(11):4007–4024. [PubMed] [Google Scholar]
  14. Kumar S., Baglioni C. Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-2. J Biol Chem. 1991 Nov 5;266(31):20960–20964. [PubMed] [Google Scholar]
  15. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  16. Matsubara K., Okubo K. cDNA analyses in the human genome project. Gene. 1993 Dec 15;135(1-2):265–274. doi: 10.1016/0378-1119(93)90076-f. [DOI] [PubMed] [Google Scholar]
  17. Mikus P., Urano T., Liljeström P., Ny T. Plasminogen-activator inhibitor type 2 (PAI-2) is a spontaneously polymerising SERPIN. Biochemical characterisation of the recombinant intracellular and extracellular forms. Eur J Biochem. 1993 Dec 15;218(3):1071–1082. doi: 10.1111/j.1432-1033.1993.tb18467.x. [DOI] [PubMed] [Google Scholar]
  18. Miyata T., Isobe K., Dawson R., Ritter M. A., Inagi R., Oda O., Taguchi R., Ikezawa H., Inoue I., Seo H. Determination of the molecular nature and cellular localization of Thy-1 in human renal tissue. Immunology. 1990 Mar;69(3):391–395. [PMC free article] [PubMed] [Google Scholar]
  19. Miyata T., Isobe K., Inagi R., Taguchi R., Ikezawa H., Takai I., Fujita Y., Iwamoto T., Hasegawa T., Oda O. Rat mesangial cells actively produce phosphatidylinositol-anchored Thy-1. Immunology. 1989 Aug;67(4):531–533. [PMC free article] [PubMed] [Google Scholar]
  20. Ogiwara A., Uchiyama I., Seto Y., Kanehisa M. Construction of a dictionary of sequence motifs that characterize groups of related proteins. Protein Eng. 1992 Sep;5(6):479–488. doi: 10.1093/protein/5.6.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okubo K., Hori N., Matoba R., Niiyama T., Fukushima A., Kojima Y., Matsubara K. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet. 1992 Nov;2(3):173–179. doi: 10.1038/ng1192-173. [DOI] [PubMed] [Google Scholar]
  22. Patston P. A., Gettins P. G. Significance of secondary structure predictions on the reactive center loop region of serpins: a model for the folding of serpins into a metastable state. FEBS Lett. 1996 Mar 25;383(1-2):87–92. doi: 10.1016/0014-5793(96)00231-1. [DOI] [PubMed] [Google Scholar]
  23. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Potempa J., Korzus E., Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994 Jun 10;269(23):15957–15960. [PubMed] [Google Scholar]
  25. Remold-O'Donnell E. The ovalbumin family of serpin proteins. FEBS Lett. 1993 Jan 4;315(2):105–108. doi: 10.1016/0014-5793(93)81143-n. [DOI] [PubMed] [Google Scholar]
  26. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  27. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  28. Schick C., Kamachi Y., Bartuski A. J., Cataltepe S., Schechter N. M., Pemberton P. A., Silverman G. A. Squamous cell carcinoma antigen 2 is a novel serpin that inhibits the chymotrypsin-like proteinases cathepsin G and mast cell chymase. J Biol Chem. 1997 Jan 17;272(3):1849–1855. doi: 10.1074/jbc.272.3.1849. [DOI] [PubMed] [Google Scholar]
  29. Stein P. E., Carrell R. W. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol. 1995 Feb;2(2):96–113. doi: 10.1038/nsb0295-96. [DOI] [PubMed] [Google Scholar]
  30. Striker G. E., Striker L. J. Glomerular cell culture. Lab Invest. 1985 Aug;53(2):122–131. [PubMed] [Google Scholar]
  31. Suzuki D., Miyazaki M., Jinde K., Koji T., Yagame M., Endoh M., Nomoto Y., Sakai H. In situ hybridization studies of matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1 and type IV collagen in diabetic nephropathy. Kidney Int. 1997 Jul;52(1):111–119. doi: 10.1038/ki.1997.310. [DOI] [PubMed] [Google Scholar]
  32. Wohlwend A., Belin D., Vassalli J. D. Plasminogen activator-specific inhibitors in mouse macrophages: in vivo and in vitro modulation of their synthesis and secretion. J Immunol. 1987 Aug 15;139(4):1278–1284. [PubMed] [Google Scholar]
  33. Wohlwend A., Belin D., Vassalli J. D. Plasminogen activator-specific inhibitors produced by human monocytes/macrophages. J Exp Med. 1987 Feb 1;165(2):320–339. doi: 10.1084/jem.165.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wright H. T. The structural puzzle of how serpin serine proteinase inhibitors work. Bioessays. 1996 Jun;18(6):453–464. doi: 10.1002/bies.950180607. [DOI] [PubMed] [Google Scholar]
  35. Yasuda Y., Miyata T., Nangaku M., Iida Y., Maeda K., Kurokawa K., Okubo K. Functional quantitative analysis of the genome in cultured human mesangial cells. Technical note. Kidney Int. 1998 Jan;53(1):154–158. doi: 10.1046/j.1523-1755.1998.00751.x. [DOI] [PubMed] [Google Scholar]
  36. Ye R. D., Wun T. C., Sadler J. E. Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells. J Biol Chem. 1988 Apr 5;263(10):4869–4875. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES