Abstract
The present study analyzed peripheral blood B cell populations separated by IgD and CD27 expression in six males with X-linked hyper-IgM syndrome (XHIM). Costimulation of mononuclear cells from most of the patients induced no to low levels of class switching from IgM to IgG and IgA with Staphylococcus aureus Cowan strain (SAC) plus IL-2 or anti-CD40 mAb (anti-CD40) plus IL-10. Measurable levels of IgE were secreted in some of the patients after stimulation with anti-CD40 plus IL-4. Costimulation with SAC plus IL-2 plus anti-CD40 plus IL-10 yielded secretion of significant levels of IgG in addition to IgM, but not IgA. The most striking finding was that peripheral blood B cells from all of the six patients were composed of only IgD+ CD27(-) and IgD+ CD27(+) B cells; IgD- CD27(+) memory B cells were greatly decreased. IgD+ CD27(+) B cells from an XHIM patient produced IgM predominantly. Our data indicate that the low response of IgG production in XHIM patients is due to reduced numbers of IgD- CD27(+) memory B cells. However, the IgG production can be induced by stimulation of immunoglobulin receptors and CD40 in cooperation with such cytokines as IL-2 and IL-10 in vitro.
Full Text
The Full Text of this article is available as a PDF (293.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agematsu K., Kobata T., Sugita K., Hirose T., Schlossman S. F., Morimoto C. Direct cellular communications between CD45R0 and CD45RA T cell subsets via CD27/CD70. J Immunol. 1995 Apr 15;154(8):3627–3635. [PubMed] [Google Scholar]
- Agematsu K., Kobata T., Yang F. C., Nakazawa T., Fukushima K., Kitahara M., Mori T., Sugita K., Morimoto C., Komiyama A. CD27/CD70 interaction directly drives B cell IgG and IgM synthesis. Eur J Immunol. 1995 Oct;25(10):2825–2829. doi: 10.1002/eji.1830251017. [DOI] [PubMed] [Google Scholar]
- Agematsu K., Nagumo H., Oguchi Y., Nakazawa T., Fukushima K., Yasui K., Ito S., Kobata T., Morimoto C., Komiyama A. Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood. 1998 Jan 1;91(1):173–180. [PubMed] [Google Scholar]
- Agematsu K., Nagumo H., Yang F. C., Nakazawa T., Fukushima K., Ito S., Sugita K., Mori T., Kobata T., Morimoto C. B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol. 1997 Aug;27(8):2073–2079. doi: 10.1002/eji.1830270835. [DOI] [PubMed] [Google Scholar]
- Allen R. C., Armitage R. J., Conley M. E., Rosenblatt H., Jenkins N. A., Copeland N. G., Bedell M. A., Edelhoff S., Disteche C. M., Simoneaux D. K. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993 Feb 12;259(5097):990–993. doi: 10.1126/science.7679801. [DOI] [PubMed] [Google Scholar]
- Armitage R. J., Fanslow W. C., Strockbine L., Sato T. A., Clifford K. N., Macduff B. M., Anderson D. M., Gimpel S. D., Davis-Smith T., Maliszewski C. R. Molecular and biological characterization of a murine ligand for CD40. Nature. 1992 May 7;357(6373):80–82. doi: 10.1038/357080a0. [DOI] [PubMed] [Google Scholar]
- Arpin C., Déchanet J., Van Kooten C., Merville P., Grouard G., Brière F., Banchereau J., Liu Y. J. Generation of memory B cells and plasma cells in vitro. Science. 1995 May 5;268(5211):720–722. doi: 10.1126/science.7537388. [DOI] [PubMed] [Google Scholar]
- Aruffo A., Farrington M., Hollenbaugh D., Li X., Milatovich A., Nonoyama S., Bajorath J., Grosmaire L. S., Stenkamp R., Neubauer M. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993 Jan 29;72(2):291–300. doi: 10.1016/0092-8674(93)90668-g. [DOI] [PubMed] [Google Scholar]
- Banchereau J., Bazan F., Blanchard D., Brière F., Galizzi J. P., van Kooten C., Liu Y. J., Rousset F., Saeland S. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12:881–922. doi: 10.1146/annurev.iy.12.040194.004313. [DOI] [PubMed] [Google Scholar]
- Banchereau J., Rousset F. Growing human B lymphocytes in the CD40 system. Nature. 1991 Oct 17;353(6345):678–679. doi: 10.1038/353678a0. [DOI] [PubMed] [Google Scholar]
- Callard R. E., Armitage R. J., Fanslow W. C., Spriggs M. K. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today. 1993 Nov;14(11):559–564. doi: 10.1016/0167-5699(93)90188-Q. [DOI] [PubMed] [Google Scholar]
- Callard R. E., Smith S. H., Herbert J., Morgan G., Padayachee M., Lederman S., Chess L., Kroczek R. A., Fanslow W. C., Armitage R. J. CD40 ligand (CD40L) expression and B cell function in agammaglobulinemia with normal or elevated levels of IgM (HIM). Comparison of X-linked, autosomal recessive, and non-X-linked forms of the disease, and obligate carriers. J Immunol. 1994 Oct 1;153(7):3295–3306. [PubMed] [Google Scholar]
- Camerini D., Walz G., Loenen W. A., Borst J., Seed B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol. 1991 Nov 1;147(9):3165–3169. [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Chu Y. W., Marin E., Fuleihan R., Ramesh N., Rosen F. S., Geha R. S., Insel R. A. Somatic mutation of human immunoglobulin V genes in the X-linked HyperIgM syndrome. J Clin Invest. 1995 Mar;95(3):1389–1393. doi: 10.1172/JCI117791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiSanto J. P., Bonnefoy J. Y., Gauchat J. F., Fischer A., de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):541–543. doi: 10.1038/361541a0. [DOI] [PubMed] [Google Scholar]
- Durandy A., Hivroz C., Mazerolles F., Schiff C., Bernard F., Jouanguy E., Revy P., DiSanto J. P., Gauchat J. F., Bonnefoy J. Y. Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J Immunol. 1997 Mar 15;158(6):2576–2584. [PubMed] [Google Scholar]
- Durandy A., Schiff C., Bonnefoy J. Y., Forveille M., Rousset F., Mazzei G., Milili M., Fischer A. Induction by anti-CD40 antibody or soluble CD40 ligand and cytokines of IgG, IgA and IgE production by B cells from patients with X-linked hyper IgM syndrome. Eur J Immunol. 1993 Sep;23(9):2294–2299. doi: 10.1002/eji.1830230936. [DOI] [PubMed] [Google Scholar]
- Durandy A., Schiff C., Bonnefoy J. Y., Forveille M., Rousset F., Mazzei G., Milili M., Fischer A. Induction by anti-CD40 antibody or soluble CD40 ligand and cytokines of IgG, IgA and IgE production by B cells from patients with X-linked hyper IgM syndrome. Eur J Immunol. 1993 Sep;23(9):2294–2299. doi: 10.1002/eji.1830230936. [DOI] [PubMed] [Google Scholar]
- Foy T. M., Durie F. H., Noelle R. J. The expansive role of CD40 and its ligand, gp39, in immunity. Semin Immunol. 1994 Oct;6(5):259–266. doi: 10.1006/smim.1994.1034. [DOI] [PubMed] [Google Scholar]
- Fuleihan R., Ahern D., Geha R. S. Decreased expression of the ligand for CD40 in newborn lymphocytes. Eur J Immunol. 1994 Aug;24(8):1925–1928. doi: 10.1002/eji.1830240832. [DOI] [PubMed] [Google Scholar]
- Fuleihan R., Ramesh N., Loh R., Jabara H., Rosen R. S., Chatila T., Fu S. M., Stamenkovic I., Geha R. S. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2170–2173. doi: 10.1073/pnas.90.6.2170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gascan H., Gauchat J. F., Aversa G., Van Vlasselaer P., de Vries J. E. Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signaling pathways. J Immunol. 1991 Jul 1;147(1):8–13. [PubMed] [Google Scholar]
- Goodwin R. G., Alderson M. R., Smith C. A., Armitage R. J., VandenBos T., Jerzy R., Tough T. W., Schoenborn M. A., Davis-Smith T., Hennen K. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell. 1993 May 7;73(3):447–456. doi: 10.1016/0092-8674(93)90133-b. [DOI] [PubMed] [Google Scholar]
- Gray D., Dullforce P., Jainandunsing S. Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction. J Exp Med. 1994 Jul 1;180(1):141–155. doi: 10.1084/jem.180.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Güssow D., Rein R., Ginjaar I., Hochstenbach F., Seemann G., Kottman A., Ploegh H. L. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J Immunol. 1987 Nov 1;139(9):3132–3138. [PubMed] [Google Scholar]
- Han S., Hathcock K., Zheng B., Kepler T. B., Hodes R., Kelsoe G. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol. 1995 Jul 15;155(2):556–567. [PubMed] [Google Scholar]
- Jacquot S., Kobata T., Iwata S., Morimoto C., Schlossman S. F. CD154/CD40 and CD70/CD27 interactions have different and sequential functions in T cell-dependent B cell responses: enhancement of plasma cell differentiation by CD27 signaling. J Immunol. 1997 Sep 15;159(6):2652–2657. [PubMed] [Google Scholar]
- Kobata T., Jacquot S., Kozlowski S., Agematsu K., Schlossman S. F., Morimoto C. CD27-CD70 interactions regulate B-cell activation by T cells. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11249–11253. doi: 10.1073/pnas.92.24.11249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korthäuer U., Graf D., Mages H. W., Brière F., Padayachee M., Malcolm S., Ugazio A. G., Notarangelo L. D., Levinsky R. J., Kroczek R. A. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):539–541. doi: 10.1038/361539a0. [DOI] [PubMed] [Google Scholar]
- Morimoto C., Letvin N. L., Distaso J. A., Aldrich W. R., Schlossman S. F. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 Mar;134(3):1508–1515. [PubMed] [Google Scholar]
- Müller F., Aukrust P., Nilssen D. E., Frøland S. S. Reduced serum level of transforming growth factor-beta in patients with IgA deficiency. Clin Immunol Immunopathol. 1995 Aug;76(2):203–208. doi: 10.1006/clin.1995.1116. [DOI] [PubMed] [Google Scholar]
- Nonoyama S., Farrington M. L., Ochs H. D. Effect of IL-2 on immunoglobulin production by anti-CD40-activated human B cells: synergistic effect with IL-10 and antagonistic effect with IL-4. Clin Immunol Immunopathol. 1994 Sep;72(3):373–379. doi: 10.1006/clin.1994.1155. [DOI] [PubMed] [Google Scholar]
- Nonoyama S., Penix L. A., Edwards C. P., Lewis D. B., Ito S., Aruffo A., Wilson C. B., Ochs H. D. Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest. 1995 Jan;95(1):66–75. doi: 10.1172/JCI117677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonoyama S., Shimadzu M., Toru H., Seyama K., Nunoi H., Neubauer M., Yata J., Och H. D. Mutations of the CD40 ligand gene in 13 Japanese patients with X-linked hyper-IgM syndrome. Hum Genet. 1997 May;99(5):624–627. doi: 10.1007/s004390050417. [DOI] [PubMed] [Google Scholar]
- ROSEN F. S., KEVY S. V., MERLER E., JANEWAY C. A., GITLIN D. Recurrent bacterial infections and dysgamma-globulinemia: deficiency of 7S gamma-globulins in the presence of elevated 19S gamma-globulins. Report of two cases. Pediatrics. 1961 Aug;28:182–195. [PubMed] [Google Scholar]
- Rousset F., Garcia E., Defrance T., Péronne C., Vezzio N., Hsu D. H., Kastelein R., Moore K. W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1890–1893. doi: 10.1073/pnas.89.5.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki O., Tanaka T., Wada Y., Uda H., Inoue A., Katada Y., Izeki M., Iwata M., Nunoi H., Matsuda I. Signaling through CD40 rescues IgE but not IgG or IgA secretion in X-linked immunodeficiency with hyper-IgM. J Clin Invest. 1995 Feb;95(2):510–514. doi: 10.1172/JCI117692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Splawski J. B., Jelinek D. F., Lipsky P. E. Delineation of the functional capacity of human neonatal lymphocytes. J Clin Invest. 1991 Feb;87(2):545–553. doi: 10.1172/JCI115029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Splawski J. B., Nishioka J., Nishioka Y., Lipsky P. E. CD40 ligand is expressed and functional on activated neonatal T cells. J Immunol. 1996 Jan 1;156(1):119–127. [PubMed] [Google Scholar]
- Stamenkovic I., Clark E. A., Seed B. A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 1989 May;8(5):1403–1410. doi: 10.1002/j.1460-2075.1989.tb03521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugita K., Hirose T., Rothstein D. M., Donahue C., Schlossman S. F., Morimoto C. CD27, a member of the nerve growth factor receptor family, is preferentially expressed on CD45RA+ CD4 T cell clones and involved in distinct immunoregulatory functions. J Immunol. 1992 Nov 15;149(10):3208–3216. [PubMed] [Google Scholar]
- Xu J., Foy T. M., Laman J. D., Elliott E. A., Dunn J. J., Waldschmidt T. J., Elsemore J., Noelle R. J., Flavell R. A. Mice deficient for the CD40 ligand. Immunity. 1994 Aug;1(5):423–431. doi: 10.1016/1074-7613(94)90073-6. [DOI] [PubMed] [Google Scholar]
- van Essen D., Kikutani H., Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature. 1995 Dec 7;378(6557):620–623. doi: 10.1038/378620a0. [DOI] [PubMed] [Google Scholar]