Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 1;102(5):881–892. doi: 10.1172/JCI3212

PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase.

L T Duong 1, P T Lakkakorpi 1, I Nakamura 1, M Machwate 1, R M Nagy 1, G A Rodan 1
PMCID: PMC508953  PMID: 9727056

Abstract

Osteoclast activation is initiated by adhesion to the bone surface, followed by cytoskeletal rearrangement, the formation of the sealing zone, and a polarized ruffled membrane. This study shows that PYK2/CAKbeta/RAFTK, a cytoplasmic kinase related to the focal adhesion kinase, is highly expressed in rat osteoclasts in vivo. Using murine osteoclast-like cells (OCLs) or their mononuclear precursors (pOCs), generated in a coculture of bone marrow and osteoblastic MB1.8 cells, we show: (a) tyrosine phosphorylation of PYK2 upon ligation of beta3 integrins or adhesion of pOCs to serum, vitronectin, osteopontin, or fibronectin but not to laminin or collagen; (b) coimmunoprecipitation of PYK2 and c-Src from OCLs; (c) PYK2 binding to the SH2 domains of Src; (d) marked reduction in tyrosine phosphorylation and kinase activity of PYK2 in OCLs derived from Src (-/-) mice, which do not form actin rings and do not resorb bone; (e) PYK2 phosphorylation by exogeneous c-Src; (f) translocation of PYK2 to the Triton X-100 insoluble cytoskeletal fraction upon adhesion; (g) localization of PYK2 in podosomes and the ring-like structures in OCLs plated on glass and in the sealing zone in OCLs plated on bone; and (h) activation of PYK2, in the presence of MB1.8 cells, parallels the formation of sealing zones and pit resorption in vitro and is reduced by echistatin or calcitonin and cytochalasin D. Taken together, these findings suggest that Src-dependent tyrosine phosphorylation of PYK2 is involved in the adhesion-induced formation of the sealing zone, required for osteoclastic bone resorption.

Full Text

The Full Text of this article is available as a PDF (941.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astier A., Avraham H., Manie S. N., Groopman J., Canty T., Avraham S., Freedman A. S. The related adhesion focal tyrosine kinase is tyrosine-phosphorylated after beta1-integrin stimulation in B cells and binds to p130cas. J Biol Chem. 1997 Jan 3;272(1):228–232. doi: 10.1074/jbc.272.1.228. [DOI] [PubMed] [Google Scholar]
  2. Avraham S., London R., Fu Y., Ota S., Hiregowdara D., Li J., Jiang S., Pasztor L. M., White R. A., Groopman J. E. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem. 1995 Nov 17;270(46):27742–27751. doi: 10.1074/jbc.270.46.27742. [DOI] [PubMed] [Google Scholar]
  3. Berg N. N., Ostergaard H. L. T cell receptor engagement induces tyrosine phosphorylation of FAK and Pyk2 and their association with Lck. J Immunol. 1997 Aug 15;159(4):1753–1757. [PubMed] [Google Scholar]
  4. Bockholt S. M., Burridge K. An examination of focal adhesion formation and tyrosine phosphorylation in fibroblasts isolated from src-, fyn-, and yes- mice. Cell Adhes Commun. 1995 May;3(2):91–100. doi: 10.3109/15419069509081279. [DOI] [PubMed] [Google Scholar]
  5. Boyce B. F., Yoneda T., Lowe C., Soriano P., Mundy G. R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 1992 Oct;90(4):1622–1627. doi: 10.1172/JCI116032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cobb B. S., Schaller M. D., Leu T. H., Parsons J. T. Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol Cell Biol. 1994 Jan;14(1):147–155. doi: 10.1128/mcb.14.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies J., Warwick J., Totty N., Philp R., Helfrich M., Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989 Oct;109(4 Pt 1):1817–1826. doi: 10.1083/jcb.109.4.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dikic I., Tokiwa G., Lev S., Courtneidge S. A., Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996 Oct 10;383(6600):547–550. doi: 10.1038/383547a0. [DOI] [PubMed] [Google Scholar]
  10. Greenberg S., Chang P., Silverstein S. C. Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Biol Chem. 1994 Feb 4;269(5):3897–3902. [PubMed] [Google Scholar]
  11. Hanks S. K., Calalb M. B., Harper M. C., Patel S. K. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8487–8491. doi: 10.1073/pnas.89.18.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helfrich M. H., Nesbitt S. A., Lakkakorpi P. T., Barnes M. J., Bodary S. C., Shankar G., Mason W. T., Mendrick D. L., Vänänen H. K., Horton M. A. Beta 1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone. 1996 Oct;19(4):317–328. doi: 10.1016/s8756-3282(96)00223-2. [DOI] [PubMed] [Google Scholar]
  13. Hiregowdara D., Avraham H., Fu Y., London R., Avraham S. Tyrosine phosphorylation of the related adhesion focal tyrosine kinase in megakaryocytes upon stem cell factor and phorbol myristate acetate stimulation and its association with paxillin. J Biol Chem. 1997 Apr 18;272(16):10804–10810. doi: 10.1074/jbc.272.16.10804. [DOI] [PubMed] [Google Scholar]
  14. Horton M. A., Spragg J. H., Bodary S. C., Helfrich M. H. Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone. 1994 Nov-Dec;15(6):639–646. doi: 10.1016/8756-3282(94)90312-3. [DOI] [PubMed] [Google Scholar]
  15. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  16. Juliano R. L., Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993 Feb;120(3):577–585. doi: 10.1083/jcb.120.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaplan K. B., Swedlow J. R., Morgan D. O., Varmus H. E. c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 1995 Jun 15;9(12):1505–1517. doi: 10.1101/gad.9.12.1505. [DOI] [PubMed] [Google Scholar]
  18. Lakkakorpi P. T., Horton M. A., Helfrich M. H., Karhukorpi E. K., Vänänen H. K. Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface. J Cell Biol. 1991 Nov;115(4):1179–1186. doi: 10.1083/jcb.115.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lakkakorpi P. T., Vänänen H. K. Calcitonin, prostaglandin E2, and dibutyryl cyclic adenosine 3',5'-monophosphate disperse the specific microfilament structure in resorbing osteoclasts. J Histochem Cytochem. 1990 Oct;38(10):1487–1493. doi: 10.1177/38.10.2169493. [DOI] [PubMed] [Google Scholar]
  20. Lakkakorpi P. T., Vänänen H. K. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res. 1991 Aug;6(8):817–826. doi: 10.1002/jbmr.5650060806. [DOI] [PubMed] [Google Scholar]
  21. Lakkakorpi P. T., Wesolowski G., Zimolo Z., Rodan G. A., Rodan S. B. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp Cell Res. 1997 Dec 15;237(2):296–306. doi: 10.1006/excr.1997.3797. [DOI] [PubMed] [Google Scholar]
  22. Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
  23. Li J., Avraham H., Rogers R. A., Raja S., Avraham S. Characterization of RAFTK, a novel focal adhesion kinase, and its integrin-dependent phosphorylation and activation in megakaryocytes. Blood. 1996 Jul 15;88(2):417–428. [PubMed] [Google Scholar]
  24. Ma E. A., Lou O., Berg N. N., Ostergaard H. L. Cytotoxic T lymphocytes express a beta3 integrin which can induce the phosphorylation of focal adhesion kinase and the related PYK-2. Eur J Immunol. 1997 Jan;27(1):329–335. doi: 10.1002/eji.1830270147. [DOI] [PubMed] [Google Scholar]
  25. Murakami H., Takahashi N., Sasaki T., Udagawa N., Tanaka S., Nakamura I., Zhang D., Barbier A., Suda T. A possible mechanism of the specific action of bisphosphonates on osteoclasts: tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone. 1995 Aug;17(2):137–144. doi: 10.1016/s8756-3282(95)00150-6. [DOI] [PubMed] [Google Scholar]
  26. Nakamura I., Jimi E., Duong L. T., Sasaki T., Takahashi N., Rodan G. A., Suda T. Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J Biol Chem. 1998 May 1;273(18):11144–11149. doi: 10.1074/jbc.273.18.11144. [DOI] [PubMed] [Google Scholar]
  27. Nakamura I., Takahashi N., Sasaki T., Jimi E., Kurokawa T., Suda T. Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J Bone Miner Res. 1996 Dec;11(12):1873–1879. doi: 10.1002/jbmr.5650111207. [DOI] [PubMed] [Google Scholar]
  28. Nesbitt S., Nesbit A., Helfrich M., Horton M. Biochemical characterization of human osteoclast integrins. Osteoclasts express alpha v beta 3, alpha 2 beta 1, and alpha v beta 1 integrins. J Biol Chem. 1993 Aug 5;268(22):16737–16745. [PubMed] [Google Scholar]
  29. Qian D., Lev S., van Oers N. S., Dikic I., Schlessinger J., Weiss A. Tyrosine phosphorylation of Pyk2 is selectively regulated by Fyn during TCR signaling. J Exp Med. 1997 Apr 7;185(7):1253–1259. doi: 10.1084/jem.185.7.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raja S., Avraham S., Avraham H. Tyrosine phosphorylation of the novel protein-tyrosine kinase RAFTK during an early phase of platelet activation by an integrin glycoprotein IIb-IIIa-independent mechanism. J Biol Chem. 1997 Apr 18;272(16):10941–10947. doi: 10.1074/jbc.272.16.10941. [DOI] [PubMed] [Google Scholar]
  31. Reinholt F. P., Hultenby K., Oldberg A., Heinegård D. Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4473–4475. doi: 10.1073/pnas.87.12.4473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sasaki H., Nagura K., Ishino M., Tobioka H., Kotani K., Sasaki T. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995 Sep 8;270(36):21206–21219. doi: 10.1074/jbc.270.36.21206. [DOI] [PubMed] [Google Scholar]
  33. Sato M., Sardana M. K., Grasser W. A., Garsky V. M., Murray J. M., Gould R. J. Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol. 1990 Oct;111(4):1713–1723. doi: 10.1083/jcb.111.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schaller M. D., Parsons J. T. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol. 1994 Oct;6(5):705–710. doi: 10.1016/0955-0674(94)90097-3. [DOI] [PubMed] [Google Scholar]
  35. Schaller M. D., Sasaki T. Differential signaling by the focal adhesion kinase and cell adhesion kinase beta. J Biol Chem. 1997 Oct 3;272(40):25319–25325. doi: 10.1074/jbc.272.40.25319. [DOI] [PubMed] [Google Scholar]
  36. Schlaepfer D. D., Hanks S. K., Hunter T., van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994 Dec 22;372(6508):786–791. doi: 10.1038/372786a0. [DOI] [PubMed] [Google Scholar]
  37. Siciliano J. C., Toutant M., Derkinderen P., Sasaki T., Girault J. A. Differential regulation of proline-rich tyrosine kinase 2/cell adhesion kinase beta (PYK2/CAKbeta) and pp125(FAK) by glutamate and depolarization in rat hippocampus. J Biol Chem. 1996 Nov 15;271(46):28942–28946. doi: 10.1074/jbc.271.46.28942. [DOI] [PubMed] [Google Scholar]
  38. Soriano P., Montgomery C., Geske R., Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991 Feb 22;64(4):693–702. doi: 10.1016/0092-8674(91)90499-o. [DOI] [PubMed] [Google Scholar]
  39. Suda T., Nakamura I., Jimi E., Takahashi N. Regulation of osteoclast function. J Bone Miner Res. 1997 Jun;12(6):869–879. doi: 10.1359/jbmr.1997.12.6.869. [DOI] [PubMed] [Google Scholar]
  40. Takahashi N., Akatsu T., Udagawa N., Sasaki T., Yamaguchi A., Moseley J. M., Martin T. J., Suda T. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 1988 Nov;123(5):2600–2602. doi: 10.1210/endo-123-5-2600. [DOI] [PubMed] [Google Scholar]
  41. Tanaka S., Amling M., Neff L., Peyman A., Uhlmann E., Levy J. B., Baron R. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature. 1996 Oct 10;383(6600):528–531. doi: 10.1038/383528a0. [DOI] [PubMed] [Google Scholar]
  42. Tanaka S., Takahashi N., Udagawa N., Murakami H., Nakamura I., Kurokawa T., Suda T. Possible involvement of focal adhesion kinase, p125FAK, in osteoclastic bone resorption. J Cell Biochem. 1995 Aug;58(4):424–435. doi: 10.1002/jcb.240580405. [DOI] [PubMed] [Google Scholar]
  43. Tanaka S., Takahashi N., Udagawa N., Sasaki T., Fukui Y., Kurokawa T., Suda T. Osteoclasts express high levels of p60c-src, preferentially on ruffled border membranes. FEBS Lett. 1992 Nov 16;313(1):85–89. doi: 10.1016/0014-5793(92)81190-w. [DOI] [PubMed] [Google Scholar]
  44. Thomas S. M., Soriano P., Imamoto A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature. 1995 Jul 20;376(6537):267–271. doi: 10.1038/376267a0. [DOI] [PubMed] [Google Scholar]
  45. Tokiwa G., Dikic I., Lev S., Schlessinger J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996 Aug 9;273(5276):792–794. doi: 10.1126/science.273.5276.792. [DOI] [PubMed] [Google Scholar]
  46. Wesolowski G., Duong L. T., Lakkakorpi P. T., Nagy R. M., Tezuka K., Tanaka H., Rodan G. A., Rodan S. B. Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp Cell Res. 1995 Aug;219(2):679–686. doi: 10.1006/excr.1995.1279. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES