Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 1;102(5):893–901. doi: 10.1172/JCI2912

Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia.

M Merkel 1, P H Weinstock 1, T Chajek-Shaul 1, H Radner 1, B Yin 1, J L Breslow 1, I J Goldberg 1
PMCID: PMC508954  PMID: 9727057

Abstract

Lipoprotein lipase (LPL), the rate-limiting enzyme in triglyceride hydrolysis, is normally not expressed in the liver of adult humans and animals. However, liver LPL is found in the perinatal period, and in adults it can be induced by cytokines. To study the metabolic consequences of liver LPL expression, transgenic mice producing human LPL specifically in the liver were generated and crossed onto the LPL knockout (LPL0) background. LPL expression exclusively in liver rescued LPL0 mice from neonatal death. The mice developed a severe cachexia during high fat suckling, but caught up in weight after switching to a chow diet. At 18 h of age, compared with LPL0 mice, liver-only LPL-expressing mice had equally elevated triglycerides (10,700 vs. 14,800 mg/dl, P = NS), increased plasma ketones (4.3 vs. 1.7 mg/dl, P < 0.05) and glucose (28 vs. 15 mg/dl, P < 0.05), and excessive amounts of intracellular liver lipid droplets. Adult mice expressing LPL exclusively in liver had slower VLDL turnover than wild-type mice, but greater VLDL mass clearance, increased VLDL triglyceride production, and three- to fourfold more plasma ketones. In summary, it appears that liver LPL shunts circulating triglycerides to the liver, which results in a futile cycle of enhanced VLDL production and increased ketone production, and subsequently spares glucose. This may be important to sustain brain and muscle function at times of metabolic stress with limited glucose availability.

Full Text

The Full Text of this article is available as a PDF (8.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aalto-Setälä K., Fisher E. A., Chen X., Chajek-Shaul T., Hayek T., Zechner R., Walsh A., Ramakrishnan R., Ginsberg H. N., Breslow J. L. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest. 1992 Nov;90(5):1889–1900. doi: 10.1172/JCI116066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensadoun A., Koh T. L. Identification of an adipose tissue-like lipoprotein lipase in perfusates of chicken liver. J Lipid Res. 1977 Nov;18(6):768–773. [PubMed] [Google Scholar]
  3. Blanchette-Mackie E. J., Wetzel M. G., Chernick S. S., Paterniti J. R., Jr, Brown W. V., Scow R. O. Effect of the combined lipase deficiency mutation (cld/cld) on ultrastructure of tissues in mice. Diaphragm, heart, brown adipose tissue, lung, and liver. Lab Invest. 1986 Sep;55(3):347–362. [PubMed] [Google Scholar]
  4. Busch S. J., Barnhart R. L., Martin G. A., Fitzgerald M. C., Yates M. T., Mao S. J., Thomas C. E., Jackson R. L. Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice. J Biol Chem. 1994 Jun 10;269(23):16376–16382. [PubMed] [Google Scholar]
  5. Chajek-Shaul T., Friedman G., Stein O., Shiloni E., Etienne J., Stein Y. Mechanism of the hypertriglyceridemia induced by tumor necrosis factor administration to rats. Biochim Biophys Acta. 1989 Feb 20;1001(3):316–324. doi: 10.1016/0005-2760(89)90116-1. [DOI] [PubMed] [Google Scholar]
  6. Chajek-Shaul T., Ziv E., Friedman G., Etienne J., Adler J. Regulation of lipoprotein lipase activity in the sand rat: effect of nutritional state and cAMP modulation. Metabolism. 1988 Dec;37(12):1152–1158. doi: 10.1016/0026-0495(88)90193-x. [DOI] [PubMed] [Google Scholar]
  7. Chajek T., Stein O., Stein Y. Pre- and post-natal development of lipoprotein lipase and hepatic triglyceride hydrolase activity in rat tissues. Atherosclerosis. 1977 Apr;26(4):549–561. doi: 10.1016/0021-9150(77)90122-8. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Coleman T., Seip R. L., Gimble J. M., Lee D., Maeda N., Semenkovich C. F. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J Biol Chem. 1995 May 26;270(21):12518–12525. doi: 10.1074/jbc.270.21.12518. [DOI] [PubMed] [Google Scholar]
  10. Enerbäck S., Semb H., Tavernier J., Bjursell G., Olivecrona T. Tissue-specific regulation of guinea pig lipoprotein lipase; effects of nutritional state and of tumor necrosis factor on mRNA levels in adipose tissue, heart and liver. Gene. 1988 Apr 15;64(1):97–106. doi: 10.1016/0378-1119(88)90484-2. [DOI] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Goldberg I. J., Blaner W. S., Vanni T. M., Moukides M., Ramakrishnan R. Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. Studies in normal and lipoprotein lipase-inhibited monkeys. J Clin Invest. 1990 Aug;86(2):463–473. doi: 10.1172/JCI114732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldberg I. J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996 Apr;37(4):693–707. [PubMed] [Google Scholar]
  14. Greenwood M. R. The relationship of enzyme activity to feeding behavior in rats: lipoprotein lipase as the metabolic gatekeeper. Int J Obes. 1985;9 (Suppl 1):67–70. [PubMed] [Google Scholar]
  15. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hahn P., Novak M. How important are carnitine and ketones for the newborn infant? Fed Proc. 1985 Apr;44(7):2369–2373. [PubMed] [Google Scholar]
  17. Hardardóttir I., Grünfeld C., Feingold K. R. Effects of endotoxin and cytokines on lipid metabolism. Curr Opin Lipidol. 1994 Jun;5(3):207–215. doi: 10.1097/00041433-199405030-00008. [DOI] [PubMed] [Google Scholar]
  18. Levak-Frank S., Radner H., Walsh A., Stollberger R., Knipping G., Hoefler G., Sattler W., Weinstock P. H., Breslow J. L., Zechner R. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest. 1995 Aug;96(2):976–986. doi: 10.1172/JCI118145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levak-Frank S., Weinstock P. H., Hayek T., Verdery R., Hofmann W., Ramakrishnan R., Sattler W., Breslow J. L., Zechner R. Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma. J Biol Chem. 1997 Jul 4;272(27):17182–17190. doi: 10.1074/jbc.272.27.17182. [DOI] [PubMed] [Google Scholar]
  20. Masuno H., Tsujita T., Nakanishi H., Yoshida A., Fukunishi R., Okuda H. Lipoprotein lipase-like activity in the liver of mice with Sarcoma 180. J Lipid Res. 1984 May;25(5):419–427. [PubMed] [Google Scholar]
  21. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  22. Olivecrona G., Olivecrona T. Triglyceride lipases and atherosclerosis. Curr Opin Lipidol. 1995 Oct;6(5):291–305. doi: 10.1097/00041433-199510000-00009. [DOI] [PubMed] [Google Scholar]
  23. Plump A. S., Azrolan N., Odaka H., Wu L., Jiang X., Tall A., Eisenberg S., Breslow J. L. ApoA-I knockout mice: characterization of HDL metabolism in homozygotes and identification of a post-RNA mechanism of apoA-I up-regulation in heterozygotes. J Lipid Res. 1997 May;38(5):1033–1047. [PubMed] [Google Scholar]
  24. Raisonnier A., Etienne J., Arnault F., Brault D., Noé L., Chuat J. C., Galibert F. Comparison of the cDNA and amino acid sequences of lipoprotein lipase in eight species. Comp Biochem Physiol B Biochem Mol Biol. 1995 Jul;111(3):385–398. doi: 10.1016/0305-0491(95)00006-t. [DOI] [PubMed] [Google Scholar]
  25. Semenkovich C. F., Chen S. H., Wims M., Luo C. C., Li W. H., Chan L. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution. J Lipid Res. 1989 Mar;30(3):423–431. [PubMed] [Google Scholar]
  26. Smart J. L., Stephens D. N., Tonkiss J., Auestad N. S., Edmond J. Growth and development of rats artificially reared on different milk-substitutes. Br J Nutr. 1984 Sep;52(2):227–237. doi: 10.1079/bjn19840091. [DOI] [PubMed] [Google Scholar]
  27. Tracey K. J., Cerami A. Tumor necrosis factor in the malnutrition (cachexia) of infection and cancer. Am J Trop Med Hyg. 1992 Jul;47(1 Pt 2):2–7. doi: 10.4269/ajtmh.1992.47.2. [DOI] [PubMed] [Google Scholar]
  28. Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
  29. Weinstock P. H., Bisgaier C. L., Aalto-Setälä K., Radner H., Ramakrishnan R., Levak-Frank S., Essenburg A. D., Zechner R., Breslow J. L. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Invest. 1995 Dec;96(6):2555–2568. doi: 10.1172/JCI118319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weinstock P. H., Levak-Frank S., Hudgins L. C., Radner H., Friedman J. M., Zechner R., Breslow J. L. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10261–10266. doi: 10.1073/pnas.94.19.10261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yacoub L. K., Vanni T. M., Goldberg I. J. Lipoprotein lipase mRNA in neonatal and adult mouse tissues: comparison of normal and combined lipase deficiency (cld) mice assessed by in situ hybridization. J Lipid Res. 1990 Oct;31(10):1845–1852. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES