Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 1;102(5):902–909. doi: 10.1172/JCI3772

beta2-glycoprotein-I (apolipoprotein H) and beta2-glycoprotein-I-phospholipid complex harbor a recognition site for the endocytic receptor megalin.

S K Moestrup 1, I Schousboe 1, C Jacobsen 1, J R Leheste 1, E I Christensen 1, T E Willnow 1
PMCID: PMC508955  PMID: 9727058

Abstract

Screening of serum by using a surface plasmon resonance analysis assay identified beta2-glycoprotein-I/apolipoprotein H as a plasma component binding to the renal epithelial endocytic receptor megalin. A calcium-dependent megalin-mediated beta2-glycoprotein-I endocytosis was subsequently demonstrated by ligand blotting of rabbit renal cortex and uptake analysis in megalin-expressing cells. Immunohistochemical and immunoelectron microscopic examination of kidneys and the presence of high concentrations of beta2-glycoprotein-I in urine of mice with disrupted megalin gene established that megalin is the renal clearance receptor for beta2-glycoprotein-I. A significant increase in functional affinity for purified megalin was observed when beta2-glycoprotein-I was bound to the acidic phospholipids, phosphatidylserine and cardiolipin. The binding of beta2-glycoprotein-I and beta2-glycoprotein-I- phospholipid complexes to megalin was completely blocked by receptor-associated protein. In conclusion, we have demonstrated a novel receptor recognition feature of beta2-glycoprotein-I. In addition to explaining the high urinary excretion of beta2-glycoprotein-I in patients with renal tubule failure, the data provide molecular evidence for the suggested function of beta2-glycoprotein-I as a linking molecule mediating cellular recognition of phosphatidylserine-exposing particles.

Full Text

The Full Text of this article is available as a PDF (549.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanian K., Chandra J., Schroit A. J. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of beta2-glycoprotein I in macrophage recognition. J Biol Chem. 1997 Dec 5;272(49):31113–31117. doi: 10.1074/jbc.272.49.31113. [DOI] [PubMed] [Google Scholar]
  2. Birn H., Verroust P. J., Nexo E., Hager H., Jacobsen C., Christensen E. I., Moestrup S. K. Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem. 1997 Oct 17;272(42):26497–26504. doi: 10.1074/jbc.272.42.26497. [DOI] [PubMed] [Google Scholar]
  3. Borchman D., Harris E. N., Pierangeli S. S., Lamba O. P. Interactions and molecular structure of cardiolipin and beta 2-glycoprotein 1 (beta 2-GP1). Clin Exp Immunol. 1995 Nov;102(2):373–378. doi: 10.1111/j.1365-2249.1995.tb03792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chatelet F., Brianti E., Ronco P., Roland J., Verroust P. Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. I. Renal distribution. Am J Pathol. 1986 Mar;122(3):500–511. [PMC free article] [PubMed] [Google Scholar]
  5. Chatelet F., Brianti E., Ronco P., Roland J., Verroust P. Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. II. Extrarenal distribution. Am J Pathol. 1986 Mar;122(3):512–519. [PMC free article] [PubMed] [Google Scholar]
  6. Chonn A., Semple S. C., Cullis P. R. Beta 2 glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of "non-self" particles. J Biol Chem. 1995 Oct 27;270(43):25845–25849. doi: 10.1074/jbc.270.43.25845. [DOI] [PubMed] [Google Scholar]
  7. Christensen E. I., Birn H., Verroust P., Moestrup S. K. Membrane receptors for endocytosis in the renal proximal tubule. Int Rev Cytol. 1998;180:237–284. doi: 10.1016/s0074-7696(08)61772-6. [DOI] [PubMed] [Google Scholar]
  8. Diaz C., Schroit A. J. Role of translocases in the generation of phosphatidylserine asymmetry. J Membr Biol. 1996 May;151(1):1–9. doi: 10.1007/s002329900051. [DOI] [PubMed] [Google Scholar]
  9. Farquhar M. G., Saito A., Kerjaschki D., Orlando R. A. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J Am Soc Nephrol. 1995 Jul;6(1):35–47. doi: 10.1681/ASN.V6135. [DOI] [PubMed] [Google Scholar]
  10. Gliemann J., Sonne O. Uptake and degradation of insulin and alpha 2-macroglobulin-trypsin complex in rat adipocytes. Evidence for different pathways. Biochim Biophys Acta. 1985 Apr 22;845(1):124–130. doi: 10.1016/0167-4889(85)90063-1. [DOI] [PubMed] [Google Scholar]
  11. Harford J., Wolkoff A. W., Ashwell G., Klausner R. D. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor. J Cell Biol. 1983 Jun;96(6):1824–1828. doi: 10.1083/jcb.96.6.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herz J., Willnow T. E. Functions of the LDL receptor gene family. Ann N Y Acad Sci. 1994 Sep 10;737:14–19. doi: 10.1111/j.1749-6632.1994.tb44298.x. [DOI] [PubMed] [Google Scholar]
  13. Hunt J., Krilis S. The fifth domain of beta 2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J Immunol. 1994 Jan 15;152(2):653–659. [PubMed] [Google Scholar]
  14. Kerjaschki D., Exner M., Ullrich R., Susani M., Curtiss L. K., Witztum J. L., Farquhar M. G., Orlando R. A. Pathogenic antibodies inhibit the binding of apolipoproteins to megalin/gp330 in passive Heymann nephritis. J Clin Invest. 1997 Nov 1;100(9):2303–2309. doi: 10.1172/JCI119768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerjaschki D., Farquhar M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5557–5561. doi: 10.1073/pnas.79.18.5557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klaerke D. A., Røjkjaer R., Christensen L., Schousboe I. Identification of beta2-glycoprotein I as a membrane-associated protein in kidney: purification by calmodulin affinity chromatography. Biochim Biophys Acta. 1997 May 23;1339(2):203–216. doi: 10.1016/s0167-4838(96)00233-6. [DOI] [PubMed] [Google Scholar]
  17. Kounnas M. Z., Haudenschild C. C., Strickland D. K., Argraves W. S. Immunological localization of glycoprotein 330, low density lipoprotein receptor related protein and 39 kDa receptor associated protein in embryonic mouse tissues. In Vivo. 1994 May-Jun;8(3):343–351. [PubMed] [Google Scholar]
  18. Kounnas M. Z., Loukinova E. B., Stefansson S., Harmony J. A., Brewer B. H., Strickland D. K., Argraves W. S. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J Biol Chem. 1995 Jun 2;270(22):13070–13075. doi: 10.1074/jbc.270.22.13070. [DOI] [PubMed] [Google Scholar]
  19. Lapsley M., Sansom P. A., Marlow C. T., Flynn F. V., Norden A. G. Beta 2-glycoprotein-1 (apolipoprotein H) excretion in chronic renal tubular disorders: comparison with other protein markers of tubular malfunction. J Clin Pathol. 1991 Oct;44(10):812–816. doi: 10.1136/jcp.44.10.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Le Panse S., Galceran M., Pontillon F., Lelongt B., van de Putte M., Ronco P. M., Verroust P. J. Immunofunctional properties of a yolk sac epithelial cell line expressing two proteins gp280 and gp330 of the intermicrovillar area of proximal tubule cells: inhibition of endocytosis by the specific antibodies. Eur J Cell Biol. 1995 Jun;67(2):120–129. [PubMed] [Google Scholar]
  21. Lee N. S., Brewer H. B., Jr, Osborne J. C., Jr beta 2-Glycoprotein I. Molecular properties of an unusual apolipoprotein, apolipoprotein H. J Biol Chem. 1983 Apr 25;258(8):4765–4770. [PubMed] [Google Scholar]
  22. McNeil H. P., Simpson R. J., Chesterman C. N., Krilis S. A. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A. 1990 Jun;87(11):4120–4124. doi: 10.1073/pnas.87.11.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moestrup S. K., Birn H., Fischer P. B., Petersen C. M., Verroust P. J., Sim R. B., Christensen E. I., Nexø E. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8612–8617. doi: 10.1073/pnas.93.16.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moestrup S. K., Cui S., Vorum H., Bregengård C., Bjørn S. E., Norris K., Gliemann J., Christensen E. I. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest. 1995 Sep;96(3):1404–1413. doi: 10.1172/JCI118176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moestrup S. K., Gliemann J. Analysis of ligand recognition by the purified alpha 2-macroglobulin receptor (low density lipoprotein receptor-related protein). Evidence that high affinity of alpha 2-macroglobulin-proteinase complex is achieved by binding to adjacent receptors. J Biol Chem. 1991 Jul 25;266(21):14011–14017. [PubMed] [Google Scholar]
  26. Moestrup S. K., Kaltoft K., Sottrup-Jensen L., Gliemann J. The human alpha 2-macroglobulin receptor contains high affinity calcium binding sites important for receptor conformation and ligand recognition. J Biol Chem. 1990 Jul 25;265(21):12623–12628. [PubMed] [Google Scholar]
  27. Moestrup S. K., Nielsen S., Andreasen P., Jørgensen K. E., Nykjaer A., Røigaard H., Gliemann J., Christensen E. I. Epithelial glycoprotein-330 mediates endocytosis of plasminogen activator-plasminogen activator inhibitor type-1 complexes. J Biol Chem. 1993 Aug 5;268(22):16564–16570. [PubMed] [Google Scholar]
  28. Norden A. G., Fulcher L. M., Lapsley M., Flynn F. V. Excretion of beta 2-glycoprotein I (apolipoprotein H) in renal tubular disease. Clin Chem. 1991 Jan;37(1):74–77. [PubMed] [Google Scholar]
  29. Polz E., Kostner G. M. The binding of beta 2-glycoprotein-I to human serum lipoproteins: distribution among density fractions. FEBS Lett. 1979 Jun 1;102(1):183–186. doi: 10.1016/0014-5793(79)80955-2. [DOI] [PubMed] [Google Scholar]
  30. Price B. E., Rauch J., Shia M. A., Walsh M. T., Lieberthal W., Gilligan H. M., O'Laughlin T., Koh J. S., Levine J. S. Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a beta 2-glycoprotein I-dependent manner. J Immunol. 1996 Sep 1;157(5):2201–2208. [PubMed] [Google Scholar]
  31. Ramprasad M. P., Fischer W., Witztum J. L., Sambrano G. R., Quehenberger O., Steinberg D. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9580–9584. doi: 10.1073/pnas.92.21.9580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rigotti A., Acton S. L., Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem. 1995 Jul 7;270(27):16221–16224. doi: 10.1074/jbc.270.27.16221. [DOI] [PubMed] [Google Scholar]
  33. Roubey R. A. Autoantibodies to phospholipid-binding plasma proteins: a new view of lupus anticoagulants and other "antiphospholipid" autoantibodies. Blood. 1994 Nov 1;84(9):2854–2867. [PubMed] [Google Scholar]
  34. Roubey R. A., Pratt C. W., Buyon J. P., Winfield J. B. Lupus anticoagulant activity of autoimmune antiphospholipid antibodies is dependent upon beta 2-glycoprotein I. J Clin Invest. 1992 Sep;90(3):1100–1104. doi: 10.1172/JCI115926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schousboe I. Characterization of an agglutinin from human serum. Biochim Biophys Acta. 1978 Oct 18;543(3):373–382. doi: 10.1016/0304-4165(78)90055-7. [DOI] [PubMed] [Google Scholar]
  36. Schousboe I., Rasmussen M. S. Synchronized inhibition of the phospholipid mediated autoactivation of factor XII in plasma by beta 2-glycoprotein I and anti-beta 2-glycoprotein I. Thromb Haemost. 1995 May;73(5):798–804. [PubMed] [Google Scholar]
  37. Schousboe I. beta 2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway. Blood. 1985 Nov;66(5):1086–1091. [PubMed] [Google Scholar]
  38. Stefansson S., Chappell D. A., Argraves K. M., Strickland D. K., Argraves W. S. Glycoprotein 330/low density lipoprotein receptor-related protein-2 mediates endocytosis of low density lipoproteins via interaction with apolipoprotein B100. J Biol Chem. 1995 Aug 18;270(33):19417–19421. doi: 10.1074/jbc.270.33.19417. [DOI] [PubMed] [Google Scholar]
  39. Wang M. X., Kandiah D. A., Ichikawa K., Khamashta M., Hughes G., Koike T., Roubey R., Krilis S. A. Epitope specificity of monoclonal anti-beta 2-glycoprotein I antibodies derived from patients with the antiphospholipid syndrome. J Immunol. 1995 Aug 1;155(3):1629–1636. [PubMed] [Google Scholar]
  40. Willnow T. E., Goldstein J. L., Orth K., Brown M. S., Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992 Dec 25;267(36):26172–26180. [PubMed] [Google Scholar]
  41. Willnow T. E., Hilpert J., Armstrong S. A., Rohlmann A., Hammer R. E., Burns D. K., Herz J. Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8460–8464. doi: 10.1073/pnas.93.16.8460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wurm H. beta 2-Glycoprotein-I (apolipoprotein H) interactions with phospholipid vesicles. Int J Biochem. 1984;16(5):511–515. doi: 10.1016/0020-711x(84)90168-x. [DOI] [PubMed] [Google Scholar]
  43. Zwaal R. F., Schroit A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997 Feb 15;89(4):1121–1132. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES