Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 1;102(5):976–983. doi: 10.1172/JCI2366

An in vitro model for cytogenetic conversion in CML. Interferon-alpha preferentially inhibits the outgrowth of malignant stem cells preserved in long-term culture.

J J Cornelissen 1, R E Ploemacher 1, B W Wognum 1, A Borsboom 1, H C Kluin-Nelemans 1, A Hagemeijer 1, B Löwenberg 1
PMCID: PMC508963  PMID: 9727066

Abstract

IFN-alpha has been shown to prolong survival in chronic myeloid leukemia patients, but its mechanism of action is still not understood. The human cobblestone area-forming cell (CAFC) assay allows for the measurement of the concentration of normal as well as malignant stem cells, while their progeny can be measured in parallel long-term culture (LTC) in flasks. Using CAFC and LTC assays, we have examined direct effects of IFN-alpha (500; 5,000 IU/ml) on the maintenance and outgrowth of CD34-enriched normal and malignant stem cells, obtained from six patients with an established major cytogenetic response to IFN-alpha and from four nonresponding patients. CAFC concentrations were not affected by IFN-alpha. In contrast, IFN-alpha strongly inhibited the clonogenic output in flask LTC. Nucleated cells (NC) produced in LTC were evaluated by fluorescent in situ hybridization (FISH) for the presence of the Philadelphia (Ph) translocation. After 8 wk of LTC, the percentage of Ph+ NCs produced was significantly more inhibited by IFN-alpha in responding patients than in nonresponders. Control LTC without IFN-alpha showed no significant differences of Ph+ NC production between responders and nonresponders. These findings provide the first in vitro model for cytogenetic conversion and suggest that direct antiproliferative effects of IFN-alpha account for the cytogenetic response observed clinically.

Full Text

The Full Text of this article is available as a PDF (287.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal R., Doren S., Hicks B., Dunbar C. E. Long-term culture of chronic myelogenous leukemia marrow cells on stem cell factor-deficient stroma favors benign progenitors. Blood. 1995 Mar 1;85(5):1306–1312. [PubMed] [Google Scholar]
  2. Allan N. C., Richards S. M., Shepherd P. C. UK Medical Research Council randomised, multicentre trial of interferon-alpha n1 for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response. The UK Medical Research Council's Working Parties for Therapeutic Trials in Adult Leukaemia. Lancet. 1995 Jun 3;345(8962):1392–1397. doi: 10.1016/s0140-6736(95)92596-1. [DOI] [PubMed] [Google Scholar]
  3. Arnoldus E. P., Wiegant J., Noordermeer I. A., Wessels J. W., Beverstock G. C., Grosveld G. C., van der Ploeg M., Raap A. K. Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet. 1990;54(3-4):108–111. doi: 10.1159/000132972. [DOI] [PubMed] [Google Scholar]
  4. Berenson R. J., Andrews R. G., Bensinger W. I., Kalamasz D., Knitter G., Buckner C. D., Bernstein I. D. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest. 1988 Mar;81(3):951–955. doi: 10.1172/JCI113409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhatia R., McCarthy J. B., Verfaillie C. M. Interferon-alpha restores normal beta 1 integrin-mediated inhibition of hematopoietic progenitor proliferation by the marrow microenvironment in chronic myelogenous leukemia. Blood. 1996 May 1;87(9):3883–3891. [PubMed] [Google Scholar]
  6. Bhatia R., Wayner E. A., McGlave P. B., Verfaillie C. M. Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. J Clin Invest. 1994 Jul;94(1):384–391. doi: 10.1172/JCI117333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Breems D. A., Blokland E. A., Neben S., Ploemacher R. E. Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia. 1994 Jul;8(7):1095–1104. [PubMed] [Google Scholar]
  8. Burke L. C., Bybee A., Thomas N. S. The retinoblastoma protein is partially phosphorylated during early G1 in cycling cells but not in G1 cells arrested with alpha-interferon. Oncogene. 1992 Apr;7(4):783–788. [PubMed] [Google Scholar]
  9. Carlo-Stella C., Cazzola M., Ganser A., Bergamaschi G., Pedrazzoli P., Hoelzer D., Ascari E. Synergistic antiproliferative effect of recombinant interferon-gamma with recombinant interferon-alpha on chronic myelogenous leukemia hematopoietic progenitor cells (CFU-GEMM, CFU-Mk, BFU-E, and CFU-GM). Blood. 1988 Oct;72(4):1293–1299. [PubMed] [Google Scholar]
  10. Cornelissen J. J., Wognum A. W., Ploemacher R. E., Frassoni F., Wagemaker G., Hagemeijer A., Löwenberg B. Efficient long-term maintenance of chronic myeloid leukemic cobblestone area forming cells on a murine stromal cell line. Leukemia. 1997 Jan;11(1):126–133. doi: 10.1038/sj.leu.2400518. [DOI] [PubMed] [Google Scholar]
  11. Dowding C., Guo A. P., Osterholz J., Siczkowski M., Goldman J., Gordon M. Interferon-alpha overrides the deficient adhesion of chronic myeloid leukemia primitive progenitor cells to bone marrow stromal cells. Blood. 1991 Jul 15;78(2):499–505. [PubMed] [Google Scholar]
  12. Eaves A. C., Cashman J. D., Gaboury L. A., Kalousek D. K., Eaves C. J. Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5306–5310. doi: 10.1073/pnas.83.14.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Einat M., Resnitzky D., Kimchi A. Close link between reduction of c-myc expression by interferon and, G0/G1 arrest. Nature. 1985 Feb 14;313(6003):597–600. doi: 10.1038/313597a0. [DOI] [PubMed] [Google Scholar]
  14. Estrov Z., Kurzrock R., Wetzler M., Kantarjian H., Blake M., Harris D., Gutterman J. U., Talpaz M. Suppression of chronic myelogenous leukemia colony growth by interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptors: a novel application for inhibitors of IL-1 activity. Blood. 1991 Sep 15;78(6):1476–1484. [PubMed] [Google Scholar]
  15. Fialkow P. J., Jacobson R. J., Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977 Jul;63(1):125–130. doi: 10.1016/0002-9343(77)90124-3. [DOI] [PubMed] [Google Scholar]
  16. Galvani D. W., Cawley J. C. Mechanism of action of alpha interferon in chronic granulocytic leukaemia: evidence for preferential inhibition of late progenitors. Br J Haematol. 1989 Dec;73(4):475–479. doi: 10.1111/j.1365-2141.1989.tb00283.x. [DOI] [PubMed] [Google Scholar]
  17. Groffen J., Stephenson J. R., Heisterkamp N., de Klein A., Bartram C. R., Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984 Jan;36(1):93–99. doi: 10.1016/0092-8674(84)90077-1. [DOI] [PubMed] [Google Scholar]
  18. Hehlmann R. Chronic myelogenous leukemia: does interferon alpha prolong life? Leukemia. 1996 Feb;10(2):193–196. [PubMed] [Google Scholar]
  19. Hochhaus A., Lin F., Reiter A., Skladny H., Mason P. J., van Rhee F., Shepherd P. C., Allan N. C., Hehlmann R., Goldman J. M. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood. 1996 Feb 15;87(4):1549–1555. [PubMed] [Google Scholar]
  20. Kantarjian H. M., Smith T. L., O'Brien S., Beran M., Pierce S., Talpaz M. Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-alpha therapy. The Leukemia Service. Ann Intern Med. 1995 Feb 15;122(4):254–261. doi: 10.7326/0003-4819-122-4-199502150-00003. [DOI] [PubMed] [Google Scholar]
  21. Kelemen E. Specific thrombopoietin cloned and sequenced--with personal retrospect and clinical prospects. Leukemia. 1995 Jan;9(1):1–2. [PubMed] [Google Scholar]
  22. Kimchi A. Cytokine triggered molecular pathways that control cell cycle arrest. J Cell Biochem. 1992 Sep;50(1):1–9. doi: 10.1002/jcb.240500102. [DOI] [PubMed] [Google Scholar]
  23. Kimchi A., Resnitzky D., Ber R., Gat G. Recessive genetic deregulation abrogates c-myc suppression by interferon and is implicated in oncogenesis. Mol Cell Biol. 1988 Jul;8(7):2828–2836. doi: 10.1128/mcb.8.7.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McGlave P. B. Therapy of chronic myelogenous leukemia with related or unrelated donor bone marrow transplantation. Leukemia. 1992 Nov;6 (Suppl 4):115–117. [PubMed] [Google Scholar]
  25. Melamed D., Tiefenbrun N., Yarden A., Kimchi A. Interferons and interleukin-6 suppress the DNA-binding activity of E2F in growth-sensitive hematopoietic cells. Mol Cell Biol. 1993 Sep;13(9):5255–5265. doi: 10.1128/mcb.13.9.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Melo J. V. The molecular biology of chronic myeloid leukaemia. Leukemia. 1996 May;10(5):751–756. [PubMed] [Google Scholar]
  27. Ploemacher R. E., van der Loo J. C., van Beurden C. A., Baert M. R. Wheat germ agglutinin affinity of murine hemopoietic stem cell subpopulations is an inverse function of their long-term repopulating ability in vitro and in vivo. Leukemia. 1993 Jan;7(1):120–130. [PubMed] [Google Scholar]
  28. Ploemacher R. E., van der Sluijs J. P., Voerman J. S., Brons N. H. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood. 1989 Dec;74(8):2755–2763. [PubMed] [Google Scholar]
  29. Ploemacher R. E., van der Sluijs J. P., van Beurden C. A., Baert M. R., Chan P. L. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood. 1991 Nov 15;78(10):2527–2533. [PubMed] [Google Scholar]
  30. Resnitzky D., Tiefenbrun N., Berissi H., Kimchi A. Interferons and interleukin 6 suppress phosphorylation of the retinoblastoma protein in growth-sensitive hematopoietic cells. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):402–406. doi: 10.1073/pnas.89.1.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Selleri C., Sato T., Del Vecchio L., Luciano L., Barrett A. J., Rotoli B., Young N. S., Maciejewski J. P. Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-alpha in chronic myelogenous leukemia. Blood. 1997 Feb 1;89(3):957–964. [PubMed] [Google Scholar]
  32. Sutherland H. J., Lansdorp P. M., Henkelman D. H., Eaves A. C., Eaves C. J. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A. 1990 May;87(9):3584–3588. doi: 10.1073/pnas.87.9.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Talpaz M., Estrov Z., Kantarjian H., Ku S., Foteh A., Kurzrock R. Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J Clin Invest. 1994 Oct;94(4):1383–1389. doi: 10.1172/JCI117473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Talpaz M., Kantarjian H. M., McCredie K., Trujillo J. M., Keating M. J., Gutterman J. U. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukemia. N Engl J Med. 1986 Apr 24;314(17):1065–1069. doi: 10.1056/NEJM198604243141701. [DOI] [PubMed] [Google Scholar]
  35. Talpaz M., McCredie K. B., Mavligit G. M., Gutterman J. U. Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood. 1983 Sep;62(3):689–692. [PubMed] [Google Scholar]
  36. Terpstra W., Ploemacher R. E., Prins A., van Lom K., Pouwels K., Wognum A. W., Wagemaker G., Löwenberg B., Wielenga J. J. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood. 1996 Sep 15;88(6):1944–1950. [PubMed] [Google Scholar]
  37. Tiefenbrun N., Melamed D., Levy N., Resnitzky D., Hoffman I., Reed S. I., Kimchi A. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible G0-like arrest. Mol Cell Biol. 1996 Jul;16(7):3934–3944. doi: 10.1128/mcb.16.7.3934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Udomsakdi C., Eaves C. J., Swolin B., Reid D. S., Barnett M. J., Eaves A. C. Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6192–6196. doi: 10.1073/pnas.89.13.6192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Upadhyaya G., Guba S. C., Sih S. A., Feinberg A. P., Talpaz M., Kantarjian H. M., Deisseroth A. B., Emerson S. G. Interferon-alpha restores the deficient expression of the cytoadhesion molecule lymphocyte function antigen-3 by chronic myelogenous leukemia progenitor cells. J Clin Invest. 1991 Dec;88(6):2131–2136. doi: 10.1172/JCI115543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. van der Loo J. C., van den Bos C., Baert M. R., Wagemaker G., Ploemacher R. E. Stable multilineage hematopoietic chimerism in alpha-thalassemic mice induced by a bone marrow subpopulation that excludes the majority of day-12 spleen colony-forming units. Blood. 1994 Apr 1;83(7):1769–1777. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES