Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 1;102(5):1024–1034. doi: 10.1172/JCI2494

Two different functions for CD44 proteins in human myelopoiesis.

J Moll 1, S Khaldoyanidi 1, J P Sleeman 1, M Achtnich 1, I Preuss 1, H Ponta 1, P Herrlich 1
PMCID: PMC508968  PMID: 9727071

Abstract

CD44 is important during myelopoiesis, although the contributions of variant CD44 proteins are unclear. We show here that in human long-term bone marrow culture antibodies recognizing a CD44 NH2-terminal epitope (mab 25-32) or a CD44v6 epitope (mab VFF18) inhibit myelopoiesis. However, mab 25-32 but not mab VFF18 affects myeloid colony formation. These data suggest that an early precursor cell compartment is the target for the 25-32 antibody, whereas the mab VFF18 targets later stages in myelopoiesis. Since the bulk of hemopoietic precursor cells are negative for the v6 epitope and only a minor subset of myeloid cells express the v6 epitope, we have used several human myeloid progenitor cell lines to unravel the function of different CD44 proteins. These cell lines produce variant CD44 proteins, predominantly a new variant CD44v4-v10, when stimulated towards myeloid differentiation. Features that can be acquired by the expression of CD44v4-v10 are an increased hyaluronate (HA) and a de novo chondroitin sulphate A (CS-A) binding. Although, the expression of CD44v4-v10 per se is necessary for HA and CS-A binding, the protein backbone seems to require appropriate glycosylation. HA binding results in CD44-mediated cellular self-aggregation and adhesion to the stromal cell line MS-5. In summary, our data suggest that different CD44 proteins are important for at least two different steps in myelopoiesis.

Full Text

The Full Text of this article is available as a PDF (362.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch R., Wirth K., Hofmann M., Ponta H., Matzku S., Herrlich P., Zöller M. Participation in normal immune responses of a metastasis-inducing splice variant of CD44. Science. 1992 Jul 31;257(5070):682–685. doi: 10.1126/science.1496383. [DOI] [PubMed] [Google Scholar]
  2. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  3. Assmann V., Marshall J. F., Fieber C., Hofmann M., Hart I. R. The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer cells. J Cell Sci. 1998 Jun;111(Pt 12):1685–1694. doi: 10.1242/jcs.111.12.1685. [DOI] [PubMed] [Google Scholar]
  4. Bennett K. L., Jackson D. G., Simon J. C., Tanczos E., Peach R., Modrell B., Stamenkovic I., Plowman G., Aruffo A. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol. 1995 Feb;128(4):687–698. doi: 10.1083/jcb.128.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987 Nov;70(5):1233–1244. [PubMed] [Google Scholar]
  6. Dougherty G. J., Landorp P. M., Cooper D. L., Humphries R. K. Molecular cloning of CD44R1 and CD44R2, two novel isoforms of the human CD44 lymphocyte "homing" receptor expressed by hemopoietic cells. J Exp Med. 1991 Jul 1;174(1):1–5. doi: 10.1084/jem.174.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Droll A., Dougherty S. T., Chiu R. K., Dirks J. F., McBride W. H., Cooper D. L., Dougherty G. J. Adhesive interactions between alternatively spliced CD44 isoforms. J Biol Chem. 1995 May 12;270(19):11567–11573. doi: 10.1074/jbc.270.19.11567. [DOI] [PubMed] [Google Scholar]
  8. Fischkoff S. A., Pollak A., Gleich G. J., Testa J. R., Misawa S., Reber T. J. Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60. J Exp Med. 1984 Jul 1;160(1):179–196. doi: 10.1084/jem.160.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gallagher J. T., Spooncer E., Dexter T. M. Role of the cellular matrix in haemopoiesis. I. Synthesis of glycosaminoglycans by mouse bone marrow cell cultures. J Cell Sci. 1983 Sep;63:155–171. doi: 10.1242/jcs.63.1.155. [DOI] [PubMed] [Google Scholar]
  10. Ghaffari S., Dougherty G. J., Eaves A. C., Eaves C. J. Diverse effects of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukaemic (CML) haemopoiesis in vitro. Br J Haematol. 1997 Apr;97(1):22–28. doi: 10.1046/j.1365-2141.1997.d01-2139.x. [DOI] [PubMed] [Google Scholar]
  11. Ghaffari S., Dougherty G. J., Lansdorp P. M., Eaves A. C., Eaves C. J. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia. Blood. 1995 Oct 15;86(8):2976–2985. [PubMed] [Google Scholar]
  12. Gordon M. Y., Riley G. P., Watt S. M., Greaves M. F. Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. 1987 Mar 26-Apr 1Nature. 326(6111):403–405. doi: 10.1038/326403a0. [DOI] [PubMed] [Google Scholar]
  13. Hardwick C., Hoare K., Owens R., Hohn H. P., Hook M., Moore D., Cripps V., Austen L., Nance D. M., Turley E. A. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol. 1992 Jun;117(6):1343–1350. doi: 10.1083/jcb.117.6.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heider K. H., Hofmann M., Hors E., van den Berg F., Ponta H., Herrlich P., Pals S. T. A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol. 1993 Jan;120(1):227–233. doi: 10.1083/jcb.120.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herrlich P., Zöller M., Pals S. T., Ponta H. CD44 splice variants: metastases meet lymphocytes. Immunol Today. 1993 Aug;14(8):395–399. doi: 10.1016/0167-5699(93)90141-7. [DOI] [PubMed] [Google Scholar]
  16. Hofmann M., Fieber C., Assmann V., Göttlicher M., Sleeman J., Plug R., Howells N., von Stein O., Ponta H., Herrlich P. Identification of IHABP, a 95 kDa intracellular hyaluronate binding protein. J Cell Sci. 1998 Jun;111(Pt 12):1673–1684. doi: 10.1242/jcs.111.12.1673. [DOI] [PubMed] [Google Scholar]
  17. Hudson D. L., Sleeman J., Watt F. M. CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J Cell Sci. 1995 May;108(Pt 5):1959–1970. doi: 10.1242/jcs.108.5.1959. [DOI] [PubMed] [Google Scholar]
  18. Itoh K., Tezuka H., Sakoda H., Konno M., Nagata K., Uchiyama T., Uchino H., Mori K. J. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol. 1989 Feb;17(2):145–153. [PubMed] [Google Scholar]
  19. Jackson D. G., Bell J. I., Dickinson R., Timans J., Shields J., Whittle N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol. 1995 Feb;128(4):673–685. doi: 10.1083/jcb.128.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jalkanen S. T., Bargatze R. F., Herron L. R., Butcher E. C. A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol. 1986 Oct;16(10):1195–1202. doi: 10.1002/eji.1830161003. [DOI] [PubMed] [Google Scholar]
  21. Kansas G. S., Muirhead M. J., Dailey M. O. Expression of the CD11/CD18, leukocyte adhesion molecule 1, and CD44 adhesion molecules during normal myeloid and erythroid differentiation in humans. Blood. 1990 Dec 15;76(12):2483–2492. [PubMed] [Google Scholar]
  22. Katoh S., Zheng Z., Oritani K., Shimozato T., Kincade P. W. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J Exp Med. 1995 Aug 1;182(2):419–429. doi: 10.1084/jem.182.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kitamura T., Tange T., Terasawa T., Chiba S., Kuwaki T., Miyagawa K., Piao Y. F., Miyazono K., Urabe A., Takaku F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989 Aug;140(2):323–334. doi: 10.1002/jcp.1041400219. [DOI] [PubMed] [Google Scholar]
  24. Koopman G., Heider K. H., Horst E., Adolf G. R., van den Berg F., Ponta H., Herrlich P., Pals S. T. Activated human lymphocytes and aggressive non-Hodgkin's lymphomas express a homologue of the rat metastasis-associated variant of CD44. J Exp Med. 1993 Apr 1;177(4):897–904. doi: 10.1084/jem.177.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee T. H., Wisniewski H. G., Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol. 1992 Jan;116(2):545–557. doi: 10.1083/jcb.116.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Legras S., Levesque J. P., Charrad R., Morimoto K., Le Bousse C., Clay D., Jasmin C., Smadja-Joffe F. CD44-mediated adhesiveness of human hematopoietic progenitors to hyaluronan is modulated by cytokines. Blood. 1997 Mar 15;89(6):1905–1914. [PubMed] [Google Scholar]
  27. Lesley J., English N., Perschl A., Gregoroff J., Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J Exp Med. 1995 Aug 1;182(2):431–437. doi: 10.1084/jem.182.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
  29. Lugasi H., Hajos S., Murphy J. R., Strom T. B., Nichols J., Peñarroja C., Naor D. Murine spontaneous T-cell leukemia constitutively expressing IL-2 receptor--a model for human T-cell malignancies expressing IL-2 receptor. Int J Cancer. 1990 Jan 15;45(1):163–167. doi: 10.1002/ijc.2910450129. [DOI] [PubMed] [Google Scholar]
  30. McCourt P. A., Ek B., Forsberg N., Gustafson S. Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan. J Biol Chem. 1994 Dec 2;269(48):30081–30084. [PubMed] [Google Scholar]
  31. McCourt P. A., Gustafson S. On the adsorption of hyaluronan and ICAM-1 to modified hydrophobic resins. Int J Biochem Cell Biol. 1997 Oct;29(10):1179–1189. doi: 10.1016/s1357-2725(97)00058-7. [DOI] [PubMed] [Google Scholar]
  32. Miyake K., Medina K. L., Hayashi S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990 Feb 1;171(2):477–488. doi: 10.1084/jem.171.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990 Jul 1;172(1):69–75. doi: 10.1084/jem.172.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990 Jul 1;172(1):69–75. doi: 10.1084/jem.172.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moll J., Schmidt A., van der Putten H., Plug R., Ponta H., Herrlich P., Zöller M. Accelerated immune response in transgenic mice expressing rat CD44v4-v7 on T cells. J Immunol. 1996 Mar 15;156(6):2085–2094. [PubMed] [Google Scholar]
  36. Morimoto K., Robin E., Le Bousse-Kerdiles M. C., Li Y., Clay D., Jasmin C., Smadja-Joffe F. CD44 mediates hyaluronan binding by human myeloid KG1A and KG1 cells. Blood. 1994 Feb 1;83(3):657–662. [PubMed] [Google Scholar]
  37. Murate T., Saga S., Hotta T., Asano H., Ito T., Kato K., Tsushita K., Kinoshita T., Ichikawa A., Yoshida S. The close relationship between DNA replication and the selection of differentiation lineages of human erythroleukemia cell lines K562, HEL, and TF1 into either erythroid or megakaryocytic lineages. Exp Cell Res. 1993 Sep;208(1):35–43. doi: 10.1006/excr.1993.1219. [DOI] [PubMed] [Google Scholar]
  38. Naujokas M. F., Morin M., Anderson M. S., Peterson M., Miller J. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell. 1993 Jul 30;74(2):257–268. doi: 10.1016/0092-8674(93)90417-o. [DOI] [PubMed] [Google Scholar]
  39. Neu S., Geiselhart A., Sproll M., Hahn D., Kuçi S., Niethammer D., Handgretinger R. Expression of CD44 isoforms by highly enriched CD34-positive cells in cord blood, bone marrow and leukaphereses. Bone Marrow Transplant. 1997 Oct;20(7):593–598. doi: 10.1038/sj.bmt.1700940. [DOI] [PubMed] [Google Scholar]
  40. Peach R. J., Hollenbaugh D., Stamenkovic I., Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993 Jul;122(1):257–264. doi: 10.1083/jcb.122.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Puré E., Camp R. L., Peritt D., Panettieri R. A., Jr, Lazaar A. L., Nayak S. Defective phosphorylation and hyaluronate binding of CD44 with point mutations in the cytoplasmic domain. J Exp Med. 1995 Jan 1;181(1):55–62. doi: 10.1084/jem.181.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rossbach H. C., Krizanac-Bengez L., Santos E. B., Gooley T. A., Sandmaier B. M. An antibody to CD44 enhances hematopoiesis in long-term marrow cultures. Exp Hematol. 1996 Feb;24(2):221–227. [PubMed] [Google Scholar]
  43. Rudy W., Hofmann M., Schwartz-Albiez R., Zöller M., Heider K. H., Ponta H., Herrlich P. The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res. 1993 Mar 15;53(6):1262–1268. [PubMed] [Google Scholar]
  44. Schmits R., Filmus J., Gerwin N., Senaldi G., Kiefer F., Kundig T., Wakeham A., Shahinian A., Catzavelos C., Rak J. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood. 1997 Sep 15;90(6):2217–2233. [PubMed] [Google Scholar]
  45. Screaton G. R., Bell M. V., Jackson D. G., Cornelis F. B., Gerth U., Bell J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12160–12164. doi: 10.1073/pnas.89.24.12160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Screaton G. R., Cáceres J. F., Mayeda A., Bell M. V., Plebanski M., Jackson D. G., Bell J. I., Krainer A. R. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 1995 Sep 1;14(17):4336–4349. doi: 10.1002/j.1460-2075.1995.tb00108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sherman L., Sleeman J., Herrlich P., Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol. 1994 Oct;6(5):726–733. doi: 10.1016/0955-0674(94)90100-7. [DOI] [PubMed] [Google Scholar]
  48. Siczkowski M., Andrew T., Amos S., Gordon M. Y. Hyaluronic acid regulates the function and distribution of sulfated glycosaminoglycans in bone marrow stromal cultures. Exp Hematol. 1993 Jan;21(1):126–130. [PubMed] [Google Scholar]
  49. Sleeman J. P., Arming S., Moll J. F., Hekele A., Rudy W., Sherman L. S., Kreil G., Ponta H., Herrlich P. Hyaluronate-independent metastatic behavior of CD44 variant-expressing pancreatic carcinoma cells. Cancer Res. 1996 Jul 1;56(13):3134–3141. [PubMed] [Google Scholar]
  50. Sleeman J., Rudy W., Hofmann M., Moll J., Herrlich P., Ponta H. Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity. J Cell Biol. 1996 Nov;135(4):1139–1150. doi: 10.1083/jcb.135.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sugimoto K., Tsurumaki Y., Hoshi H., Kadowaki S., LeBousse-Kerdiles M. C., Smadja-Joffe F., Mori K. J. Effects of anti-CD44 monoclonal antibody on adhesion of erythroid leukemic cells (ELM-I-1) to hematopoietic supportive cells (MS-5): CD44, but not hyaluronate-mediated, cell-cell adhesion. Exp Hematol. 1994 Jun;22(6):488–494. [PubMed] [Google Scholar]
  52. Suzu S., Inaba T., Yanai N., Kawashima T., Yamada N., Oka T., Machinami R., Ohtsuki T., Kimura F., Kondo S. Proteoglycan form of macrophage colony-stimulating factor binds low density lipoprotein. J Clin Invest. 1994 Oct;94(4):1637–1641. doi: 10.1172/JCI117506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tetteroo P. A., Massaro F., Mulder A., Schreuder-van Gelder R., von dem Borne A. E. Megakaryoblastic differentiation of proerythroblastic K562 cell-line cells. Leuk Res. 1984;8(2):197–206. doi: 10.1016/0145-2126(84)90143-7. [DOI] [PubMed] [Google Scholar]
  54. Toyama-Sorimachi N., Miyasaka M. A novel ligand for CD44 is sulfated proteoglycan. Int Immunol. 1994 Apr;6(4):655–660. doi: 10.1093/intimm/6.4.655. [DOI] [PubMed] [Google Scholar]
  55. Toyama-Sorimachi N., Sorimachi H., Tobita Y., Kitamura F., Yagita H., Suzuki K., Miyasaka M. A novel ligand for CD44 is serglycin, a hematopoietic cell lineage-specific proteoglycan. Possible involvement in lymphoid cell adherence and activation. J Biol Chem. 1995 Mar 31;270(13):7437–7444. doi: 10.1074/jbc.270.13.7437. [DOI] [PubMed] [Google Scholar]
  56. Uff C. R., Neame S. J., Isacke C. M. Hyaluronan binding by CD44 is regulated by a phosphorylation-independent mechanism. Eur J Immunol. 1995 Jul;25(7):1883–1887. doi: 10.1002/eji.1830250714. [DOI] [PubMed] [Google Scholar]
  57. Weber G. F., Ashkar S., Glimcher M. J., Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 1996 Jan 26;271(5248):509–512. doi: 10.1126/science.271.5248.509. [DOI] [PubMed] [Google Scholar]
  58. Wight T. N., Kinsella M. G., Keating A., Singer J. W. Proteoglycans in human long-term bone marrow cultures: biochemical and ultrastructural analyses. Blood. 1986 May;67(5):1333–1343. [PubMed] [Google Scholar]
  59. Zuckermann F. A., Binns R. M., Husmann R., Yang H., Carr M. M., Kim Y. B., Davis W. C., Misfeldt M., Lunney J. K. Analyses of monoclonal antibodies reactive with porcine CD44 and CD45. Vet Immunol Immunopathol. 1994 Oct;43(1-3):293–305. doi: 10.1016/0165-2427(94)90151-1. [DOI] [PubMed] [Google Scholar]
  60. Zöller M., Schmidt A., Denzel A., Moll J. Constitutive expression of a CD44 variant isoform on T cells facilitates regaining of immunocompetence in allogeneic bone marrow transplantation. Blood. 1997 Jul 15;90(2):873–885. [PubMed] [Google Scholar]
  61. de Belder A. N., Wik K. O. Preparation and properties of fluorescein-labelled hyaluronate. Carbohydr Res. 1975 Nov;44(2):251–257. doi: 10.1016/s0008-6215(00)84168-3. [DOI] [PubMed] [Google Scholar]
  62. van Weering D. H., Baas P. D., Bos J. L. A PCR-based method for the analysis of human CD44 splice products. PCR Methods Appl. 1993 Oct;3(2):100–106. doi: 10.1101/gr.3.2.100. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES