Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 1;102(5):1045–1050. doi: 10.1172/JCI3568

Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis.

Y Qin 1, P Duquette 1, Y Zhang 1, P Talbot 1, R Poole 1, J Antel 1
PMCID: PMC508971  PMID: 9727074

Abstract

The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is characterized by increased concentrations of immunoglobulin (Ig), which on electrophoretic analysis shows restricted heterogeneity (oligoclonal bands). CSF Ig is composed of both serum and intrathecally produced components. To examine the properties of intrathecal antibody-producing B cells, we analyzed Ig heavy-chain variable (V(H)) region genes of B cells recovered from the CSF of 12 MS patients and 15 patients with other neurological diseases (OND). Using a PCR technique, we could detect rearrangements of Ig V(H) genes in all samples. Sequence analysis of complementarity-determining region 3 (CDR3) of rearranged VDJ genes revealed expansion of a dominant clone or clones in 10 of the 12 MS patients. B cell clonal expansion was identified in 3 of 15 OND. The nucleotide sequences of V(H) genes from clonally expanded CSF B cells in MS patients demonstrated the preferential usage of the V(H) IV family. There were numerous somatic mutations, mainly in the CDRs, with a high replacement-to-silent ratio; the mutations were distributed in a way suggesting that these B cells had been positively selected through their antigen receptor. Our results demonstrate that in MS CSF, there is a high frequency of clonally expanded B cells that have properties of postgerminal center memory or antibody-forming lymphocytes.

Full Text

The Full Text of this article is available as a PDF (835.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Nun A., Wekerle H., Cohen I. R. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature. 1981 Jul 2;292(5818):60–61. doi: 10.1038/292060a0. [DOI] [PubMed] [Google Scholar]
  2. Both G. W., Taylor L., Pollard J. W., Steele E. J. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol Cell Biol. 1990 Oct;10(10):5187–5196. doi: 10.1128/mcb.10.10.5187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buluwela L., Albertson D. G., Sherrington P., Rabbitts P. H., Spurr N., Rabbitts T. H. The use of chromosomal translocations to study human immunoglobulin gene organization: mapping DH segments within 35 kb of the C mu gene and identification of a new DH locus. EMBO J. 1988 Jul;7(7):2003–2010. doi: 10.1002/j.1460-2075.1988.tb03039.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fierz W., Heininger K., Schaefer B., Toyka K. V., Linington C., Lassmann H. Synergism in the pathogenesis of EAE induced by an MBP-specific T-cell line and monoclonal antibodies to galactocerebroside or a myelin oligodendroglial glycoprotein. Ann N Y Acad Sci. 1988;540:360–363. doi: 10.1111/j.1749-6632.1988.tb27099.x. [DOI] [PubMed] [Google Scholar]
  5. Gay F. W., Drye T. J., Dick G. W., Esiri M. M. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain. 1997 Aug;120(Pt 8):1461–1483. doi: 10.1093/brain/120.8.1461. [DOI] [PubMed] [Google Scholar]
  6. Grewal I. S., Flavell R. A. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev. 1996 Oct;153:85–106. doi: 10.1111/j.1600-065x.1996.tb00921.x. [DOI] [PubMed] [Google Scholar]
  7. Hafler D. A., Duby A. D., Lee S. J., Benjamin D., Seidman J. G., Weiner H. L. Oligoclonal T lymphocytes in the cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1988 Apr 1;167(4):1313–1322. doi: 10.1084/jem.167.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hafler D. A., Weiner H. L. In vivo labeling of blood T cells: rapid traffic into cerebrospinal fluid in multiple sclerosis. Ann Neurol. 1987 Jul;22(1):89–93. doi: 10.1002/ana.410220121. [DOI] [PubMed] [Google Scholar]
  9. Hintzen R. Q., Polman C. H. Th-cell modulation in multiple sclerosis. Immunol Today. 1997 Oct;18(10):507–508. doi: 10.1016/s0167-5699(97)82526-1. [DOI] [PubMed] [Google Scholar]
  10. Hofman F. M., Hinton D. R., Johnson K., Merrill J. E. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med. 1989 Aug 1;170(2):607–612. doi: 10.1084/jem.170.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ichihara Y., Matsuoka H., Kurosawa Y. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J. 1988 Dec 20;7(13):4141–4150. doi: 10.1002/j.1460-2075.1988.tb03309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jukes T. H., King J. L. Evolutionary nucleotide replacements in DNA. Nature. 1979 Oct 18;281(5732):605–606. doi: 10.1038/281605a0. [DOI] [PubMed] [Google Scholar]
  13. Kermode A. G., Tofts P. S., Thompson A. J., MacManus D. G., Rudge P., Kendall B. E., Kingsley D. P., Moseley I. F., du Boulay E. P., McDonald W. I. Heterogeneity of blood-brain barrier changes in multiple sclerosis: an MRI study with gadolinium-DTPA enhancement. Neurology. 1990 Feb;40(2):229–235. doi: 10.1212/wnl.40.2.229. [DOI] [PubMed] [Google Scholar]
  14. Kocks C., Rajewsky K. Stable expression and somatic hypermutation of antibody V regions in B-cell developmental pathways. Annu Rev Immunol. 1989;7:537–559. doi: 10.1146/annurev.iy.07.040189.002541. [DOI] [PubMed] [Google Scholar]
  15. Küppers R., Zhao M., Hansmann M. L., Rajewsky K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 1993 Dec 15;12(13):4955–4967. doi: 10.1002/j.1460-2075.1993.tb06189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lassmann H., Brunner C., Bradl M., Linington C. Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathol. 1988;75(6):566–576. doi: 10.1007/BF00686201. [DOI] [PubMed] [Google Scholar]
  17. Levy N. S., Malipiero U. V., Lebecque S. G., Gearhart P. J. Early onset of somatic mutation in immunoglobulin VH genes during the primary immune response. J Exp Med. 1989 Jun 1;169(6):2007–2019. doi: 10.1084/jem.169.6.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Link H., Baig S., Olsson O., Jiang Y. P., Höjeberg B., Olsson T. Persistent anti-myelin basic protein IgG antibody response in multiple sclerosis cerebrospinal fluid. J Neuroimmunol. 1990 Aug;28(3):237–248. doi: 10.1016/0165-5728(90)90017-h. [DOI] [PubMed] [Google Scholar]
  19. Liu Y. J., Joshua D. E., Williams G. T., Smith C. A., Gordon J., MacLennan I. C. Mechanism of antigen-driven selection in germinal centres. Nature. 1989 Dec 21;342(6252):929–931. doi: 10.1038/342929a0. [DOI] [PubMed] [Google Scholar]
  20. MacLennan I. C., Liu Y. J., Oldfield S., Zhang J., Lane P. J. The evolution of B-cell clones. Curr Top Microbiol Immunol. 1990;159:37–63. doi: 10.1007/978-3-642-75244-5_3. [DOI] [PubMed] [Google Scholar]
  21. Meek K. D., Hasemann C. A., Capra J. D. Novel rearrangements at the immunoglobulin D locus. Inversions and fusions add to IgH somatic diversity. J Exp Med. 1989 Jul 1;170(1):39–57. doi: 10.1084/jem.170.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mokhtarian F., McFarlin D. E., Raine C. S. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature. 1984 May 24;309(5966):356–358. doi: 10.1038/309356a0. [DOI] [PubMed] [Google Scholar]
  23. Möller J. R., Johnson D., Brady R. O., Tourtellotte W. W., Quarles R. H. Antibodies to myelin-associated glycoprotein (MAG) in the cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 1989 Mar;22(1):55–61. doi: 10.1016/0165-5728(89)90009-x. [DOI] [PubMed] [Google Scholar]
  24. Oger J., Roos R., Antel J. P. Immunology of multiple sclerosis. Neurol Clin. 1983 Aug;1(3):655–679. [PubMed] [Google Scholar]
  25. Oksenberg J. R., Panzara M. A., Begovich A. B., Mitchell D., Erlich H. A., Murray R. S., Shimonkevitz R., Sherritt M., Rothbard J., Bernard C. C. Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature. 1993 Mar 4;362(6415):68–70. doi: 10.1038/362068a0. [DOI] [PubMed] [Google Scholar]
  26. Olsson T., Baig S., Höjeberg B., Link H. Antimyelin basic protein and antimyelin antibody-producing cells in multiple sclerosis. Ann Neurol. 1990 Feb;27(2):132–136. doi: 10.1002/ana.410270207. [DOI] [PubMed] [Google Scholar]
  27. Owens G. P., Kraus H., Burgoon M. P., Smith-Jensen T., Devlin M. E., Gilden D. H. Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann Neurol. 1998 Feb;43(2):236–243. doi: 10.1002/ana.410430214. [DOI] [PubMed] [Google Scholar]
  28. Pascual V., Liu Y. J., Magalski A., de Bouteiller O., Banchereau J., Capra J. D. Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 1994 Jul 1;180(1):329–339. doi: 10.1084/jem.180.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
  30. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
  33. Siekevitz M., Kocks C., Rajewsky K., Dildrop R. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell. 1987 Mar 13;48(5):757–770. doi: 10.1016/0092-8674(87)90073-0. [DOI] [PubMed] [Google Scholar]
  34. Tourtellotte W. W., Baumhefner R. W., Syndulko K., Shapshak P., Osborne M., Rubinshtein G., Newton L., Ellison G., Myers L., Rosario I. The long march of the cerebrospinal fluid profile indicative of clinical definite multiple sclerosis; and still marching. J Neuroimmunol. 1988 Dec;20(2-3):217–227. doi: 10.1016/0165-5728(88)90163-4. [DOI] [PubMed] [Google Scholar]
  35. Warren K. G., Catz I., Johnson E., Mielke B. Anti-myelin basic protein and anti-proteolipid protein specific forms of multiple sclerosis. Ann Neurol. 1994 Mar;35(3):280–289. doi: 10.1002/ana.410350307. [DOI] [PubMed] [Google Scholar]
  36. Wekerle H., Kojima K., Lannes-Vieira J., Lassmann H., Linington C. Animal models. Ann Neurol. 1994;36 (Suppl):S47–S53. doi: 10.1002/ana.410360714. [DOI] [PubMed] [Google Scholar]
  37. van der Maarel S., van Dijk K. W., Alexander C. M., Sasso E. H., Bull A., Milner E. C. Chromosomal organization of the human VH4 gene family. Location of individual gene segments. J Immunol. 1993 Apr 1;150(7):2858–2868. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES