Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Oct 1;102(7):1279–1285. doi: 10.1172/JCI2843

Interaction between neuronal nitric oxide synthase and inhibitory G protein activity in heart rate regulation in conscious mice.

P Jumrussirikul 1, J Dinerman 1, T M Dawson 1, V L Dawson 1, U Ekelund 1, D Georgakopoulos 1, L P Schramm 1, H Calkins 1, S H Snyder 1, J M Hare 1, R D Berger 1
PMCID: PMC508974  PMID: 9769319

Abstract

Nitric oxide (NO) synthesized within mammalian sinoatrial cells has been shown to participate in cholinergic control of heart rate (HR). However, it is not known whether NO synthesized within neurons plays a role in HR regulation. HR dynamics were measured in 24 wild-type (WT) mice and 24 mice in which the gene for neuronal NO synthase (nNOS) was absent (nNOS-/- mice). Mean HR and HR variability were compared in subsets of these animals at baseline, after parasympathetic blockade with atropine (0.5 mg/kg i.p.), after beta-adrenergic blockade with propranolol (1 mg/kg i.p.), and after combined autonomic blockade. Other animals underwent pressor challenge with phenylephrine (3 mg/kg i.p.) after beta-adrenergic blockade to test for a baroreflex-mediated cardioinhibitory response. The latter experiments were then repeated after inactivation of inhibitory G proteins with pertussis toxin (PTX) (30 microgram/kg i.p.). At baseline, nNOS-/- mice had higher mean HR (711+/-8 vs. 650+/-8 bpm, P = 0.0004) and lower HR variance (424+/-70 vs. 1,112+/-174 bpm2, P = 0.001) compared with WT mice. In nNOS-/- mice, atropine administration led to a much smaller change in mean HR (-2+/-9 vs. 49+/-5 bpm, P = 0.0008) and in HR variance (64+/-24 vs. -903+/-295 bpm2, P = 0.02) than in WT mice. In contrast, propranolol administration and combined autonomic blockade led to similar changes in mean HR between the two groups. After beta-adrenergic blockade, phenylephrine injection elicited a fall in mean HR and rise in HR variance in WT mice that was partially attenuated after treatment with PTX. The response to pressor challenge in nNOS-/- mice before PTX administration was similar to that in WT mice. However, PTX-treated nNOS-/- mice had a dramatically attenuated response to phenylephrine. These findings suggest that the absence of nNOS activity leads to reduced baseline parasympathetic tone, but does not prevent baroreflex-mediated cardioinhibition unless inhibitory G proteins are also inactivated. Thus, neuronally derived NO and cardiac inhibitory G protein activity serve as parallel pathways to mediate autonomic slowing of heart rate in the mouse.

Full Text

The Full Text of this article is available as a PDF (165.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson P. B., Hull S. S., Jr, Vanoli E., De Ferrari G. M., Wisler P., Foreman R. D., Watanabe A. M., Schwartz P. J. Pertussis toxin-induced ADP ribosylation of inhibitor G proteins alters vagal control of heart rate in vivo. Am J Physiol. 1993 Aug;265(2 Pt 2):H734–H740. doi: 10.1152/ajpheart.1993.265.2.H734. [DOI] [PubMed] [Google Scholar]
  2. Akselrod S., Gordon D., Madwed J. B., Snidman N. C., Shannon D. C., Cohen R. J. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol. 1985 Oct;249(4 Pt 2):H867–H875. doi: 10.1152/ajpheart.1985.249.4.H867. [DOI] [PubMed] [Google Scholar]
  3. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  4. Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berger R. D., Akselrod S., Gordon D., Cohen R. J. An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng. 1986 Sep;33(9):900–904. doi: 10.1109/TBME.1986.325789. [DOI] [PubMed] [Google Scholar]
  6. Broten T. P., Miyashiro J. K., Moncada S., Feigl E. O. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol. 1992 May;262(5 Pt 2):H1579–H1584. doi: 10.1152/ajpheart.1992.262.5.H1579. [DOI] [PubMed] [Google Scholar]
  7. Brown A. M. Regulation of heartbeat by G protein-coupled ion channels. Am J Physiol. 1990 Dec;259(6 Pt 2):H1621–H1628. doi: 10.1152/ajpheart.1990.259.6.H1621. [DOI] [PubMed] [Google Scholar]
  8. Christopherson K. S., Bredt D. S. Nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest. 1997 Nov 15;100(10):2424–2429. doi: 10.1172/JCI119783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Conlon K., Collins T., Kidd C. Modulation of vagal actions on heart rate produced by inhibition of nitric oxide synthase in the anaesthetized ferret. Exp Physiol. 1996 May;81(3):547–550. doi: 10.1113/expphysiol.1996.sp003957. [DOI] [PubMed] [Google Scholar]
  10. Elvan A., Rubart M., Zipes D. P. NO modulates autonomic effects on sinus discharge rate and AV nodal conduction in open-chest dogs. Am J Physiol. 1997 Jan;272(1 Pt 2):H263–H271. doi: 10.1152/ajpheart.1997.272.1.H263. [DOI] [PubMed] [Google Scholar]
  11. Fleming J. W., Hodges T. D., Watanabe A. M. Pertussis toxin-treated dog: a whole animal model of impaired inhibitory regulation of adenylate cyclase. Circ Res. 1988 May;62(5):992–1000. doi: 10.1161/01.res.62.5.992. [DOI] [PubMed] [Google Scholar]
  12. George W. J., Wilkerson R. D., Kadowitz P. J. Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J Pharmacol Exp Ther. 1973 Jan;184(1):228–235. [PubMed] [Google Scholar]
  13. Goodson A. R., Leibold J. M., Gutterman D. D. Inhibition of nitric oxide synthesis augments centrally induced sympathetic coronary vasoconstriction in cats. Am J Physiol. 1994 Oct;267(4 Pt 2):H1272–H1278. doi: 10.1152/ajpheart.1994.267.4.H1272. [DOI] [PubMed] [Google Scholar]
  14. Han X., Shimoni Y., Giles W. R. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate. J Gen Physiol. 1995 Jul;106(1):45–65. doi: 10.1085/jgp.106.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Han X., Shimoni Y., Giles W. R. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol. 1994 Apr 15;476(2):309–314. doi: 10.1113/jphysiol.1994.sp020132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hare J. M., Keaney J. F., Jr, Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995 Jan;95(1):360–366. doi: 10.1172/JCI117664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hare J. M., Kim B., Flavahan N. A., Ricker K. M., Peng X., Colman L., Weiss R. G., Kass D. A. Pertussis toxin-sensitive G proteins influence nitric oxide synthase III activity and protein levels in rat heart. J Clin Invest. 1998 Mar 15;101(6):1424–1431. doi: 10.1172/JCI1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartzell H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52(3):165–247. doi: 10.1016/0079-6107(88)90014-4. [DOI] [PubMed] [Google Scholar]
  19. Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
  20. Huang Z., Huang P. L., Panahian N., Dalkara T., Fishman M. C., Moskowitz M. A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994 Sep 23;265(5180):1883–1885. doi: 10.1126/science.7522345. [DOI] [PubMed] [Google Scholar]
  21. Ignarro L. J., Burke T. M., Wood K. S., Wolin M. S., Kadowitz P. J. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther. 1984 Mar;228(3):682–690. [PubMed] [Google Scholar]
  22. Jimbo M., Suzuki H., Ichikawa M., Kumagai K., Nishizawa M., Saruta T. Role of nitric oxide in regulation of baroreceptor reflex. J Auton Nerv Syst. 1994 Dec 15;50(2):209–219. doi: 10.1016/0165-1838(94)90011-6. [DOI] [PubMed] [Google Scholar]
  23. Keaney J. F., Jr, Hare J. M., Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol. 1996 Dec;271(6 Pt 2):H2646–H2652. doi: 10.1152/ajpheart.1996.271.6.H2646. [DOI] [PubMed] [Google Scholar]
  24. Kennedy R. H., Hicks K. K., Brian J. E., Jr, Seifen E. Nitric oxide has no chronotropic effect in right atria isolated from rat heart. Eur J Pharmacol. 1994 Apr 1;255(1-3):149–156. doi: 10.1016/0014-2999(94)90093-0. [DOI] [PubMed] [Google Scholar]
  25. Klimaschewski L., Kummer W., Mayer B., Couraud J. Y., Preissler U., Philippin B., Heym C. Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea pig heart. Circ Res. 1992 Dec;71(6):1533–1537. doi: 10.1161/01.res.71.6.1533. [DOI] [PubMed] [Google Scholar]
  26. Levy M. N. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971 Nov;29(5):437–445. doi: 10.1161/01.res.29.5.437. [DOI] [PubMed] [Google Scholar]
  27. Liu J. L., Murakami H., Zucker I. H. Effects of NO on baroreflex control of heart rate and renal nerve activity in conscious rabbits. Am J Physiol. 1996 Jun;270(6 Pt 2):R1361–R1370. doi: 10.1152/ajpregu.1996.270.6.R1361. [DOI] [PubMed] [Google Scholar]
  28. Mansier P., Médigue C., Charlotte N., Vermeiren C., Coraboeuf E., Deroubai E., Ratner E., Chevalier B., Clairambault J., Carré F. Decreased heart rate variability in transgenic mice overexpressing atrial beta 1-adrenoceptors. Am J Physiol. 1996 Oct;271(4 Pt 2):H1465–H1472. doi: 10.1152/ajpheart.1996.271.4.H1465. [DOI] [PubMed] [Google Scholar]
  29. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  30. Radomski M. W., Palmer R. M., Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1482–1489. doi: 10.1016/s0006-291x(87)80299-1. [DOI] [PubMed] [Google Scholar]
  31. Saul J. P., Arai Y., Berger R. D., Lilly L. S., Colucci W. S., Cohen R. J. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988 Jun 1;61(15):1292–1299. doi: 10.1016/0002-9149(88)91172-1. [DOI] [PubMed] [Google Scholar]
  32. Shen W., Ochoa M., Xu X., Wang J., Hintze T. H. Role of EDRF/NO in parasympathetic coronary vasodilation following carotid chemoreflex activation in conscious dogs. Am J Physiol. 1994 Aug;267(2 Pt 2):H605–H613. doi: 10.1152/ajpheart.1994.267.2.H605. [DOI] [PubMed] [Google Scholar]
  33. Sosunov A. A., Hassall C. J., Loesch A., Turmaine M., Burnstock G. Nitric oxide synthase-containing neurones and nerve fibres within cardiac ganglia of rat and guinea-pig: an electron-microscopic immunocytochemical study. Cell Tissue Res. 1996 Apr;284(1):19–28. doi: 10.1007/s004410050563. [DOI] [PubMed] [Google Scholar]
  34. Uechi M., Asai K., Osaka M., Smith A., Sato N., Wagner T. E., Ishikawa Y., Hayakawa H., Vatner D. E., Shannon R. P. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha. Circ Res. 1998 Mar 9;82(4):416–423. doi: 10.1161/01.res.82.4.416. [DOI] [PubMed] [Google Scholar]
  35. Watanabe A. M., Besch H. R., Jr Interaction between cyclic adenosine monophosphate and cyclic gunaosine monophosphate in guinea pig ventricular myocardium. Circ Res. 1975 Sep;37(3):309–317. doi: 10.1161/01.res.37.3.309. [DOI] [PubMed] [Google Scholar]
  36. Woo M. A., Stevenson W. G., Moser D. K., Trelease R. B., Harper R. M. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am Heart J. 1992 Mar;123(3):704–710. doi: 10.1016/0002-8703(92)90510-3. [DOI] [PubMed] [Google Scholar]
  37. Yatani A., Codina J., Brown A. M., Birnbaumer L. Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science. 1987 Jan 9;235(4785):207–211. doi: 10.1126/science.2432660. [DOI] [PubMed] [Google Scholar]
  38. Yatani A., Okabe K., Codina J., Birnbaumer L., Brown A. M. Heart rate regulation by G proteins acting on the cardiac pacemaker channel. Science. 1990 Sep 7;249(4973):1163–1166. doi: 10.1126/science.1697697. [DOI] [PubMed] [Google Scholar]
  39. Zanzinger J., Czachurski J., Seller H. Inhibition of sympathetic vasoconstriction is a major principle of vasodilation by nitric oxide in vivo. Circ Res. 1994 Dec;75(6):1073–1077. doi: 10.1161/01.res.75.6.1073. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES