Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Oct 1;102(7):1360–1368. doi: 10.1172/JCI2667

Cloning and identification of human Sca as a novel inhibitor of osteoclast formation and bone resorption.

S J Choi 1, R D Devlin 1, C Menaa 1, H Chung 1, G D Roodman 1, S V Reddy 1
PMCID: PMC508983  PMID: 9769328

Abstract

Increased osteoclast activity is responsible for the enhanced bone destruction in postmenopausal osteoporosis, Paget's disease, bone metastasis, and hypercalcemia of malignancy. However, the number of known inhibitory factors that block osteoclast formation and bone resorption are limited. Therefore, we used an expression-cloning approach to identify novel factors produced by osteoclasts that inhibit osteoclast activity. A candidate clone was identified and isolated from a human osteoclast-like multinucleated cell (MNC) cDNA library, named osteoclast inhibitory peptide-1 (OIP-1), and the cDNA sequence was determined. This sequence matched that of the recently identified human stem cell antigen, was structurally similar to the mouse Ly-6 gene family, and the sequence predicted it was a glycosyl phosphatidyl inositol (GPI)-anchored protein that had a cleavable COOH-terminal peptide. Western blot analysis of conditioned media from 293 cells transfected with the OIP-1 cDNA clone confirmed that OIP-1 was released into the media as a membrane-bound GPI-linked protein. Interestingly, both recombinant OIP-1 expressed in Escherichia coli (which does not have GPI linker) and OIP-1 expressed by mammalian cells significantly reduced osteoclast-like MNC formation induced by 1,25-dihydroxyvitamin D3 or PTH-related protein in mouse and human bone marrow cultures, and inhibited 45Ca release from prelabeled bone in fetal rat organ cultures. In contrast, recombinant OIP-1 did not inhibit the growth of a variety of other cell types. These data indicate that OIP-1 is a novel, specific inhibitor of osteoclast formation and bone resorption.

Full Text

The Full Text of this article is available as a PDF (483.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biskobing D. M., Fan X., Rubin J. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture. J Bone Miner Res. 1995 Jul;10(7):1025–1032. doi: 10.1002/jbmr.5650100706. [DOI] [PubMed] [Google Scholar]
  2. Bonewald L. F., Kester M. B., Schwartz Z., Swain L. D., Khare A., Johnson T. L., Leach R. J., Boyan B. D. Effects of combining transforming growth factor beta and 1,25-dihydroxyvitamin D3 on differentiation of a human osteosarcoma (MG-63). J Biol Chem. 1992 May 5;267(13):8943–8949. [PubMed] [Google Scholar]
  3. Brakenhoff R. H., Gerretsen M., Knippels E. M., van Dijk M., van Essen H., Weghuis D. O., Sinke R. J., Snow G. B., van Dongen G. A. The human E48 antigen, highly homologous to the murine Ly-6 antigen ThB, is a GPI-anchored molecule apparently involved in keratinocyte cell-cell adhesion. J Cell Biol. 1995 Jun;129(6):1677–1689. doi: 10.1083/jcb.129.6.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capone M. C., Gorman D. M., Ching E. P., Zlotnik A. Identification through bioinformatics of cDNAs encoding human thymic shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family. J Immunol. 1996 Aug 1;157(3):969–973. [PubMed] [Google Scholar]
  5. Chenu C., Pfeilschifter J., Mundy G. R., Roodman G. D. Transforming growth factor beta inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5683–5687. doi: 10.1073/pnas.85.15.5683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Classon B. J., Coverdale L. Mouse stem cell antigen Sca-2 is a member of the Ly-6 family of cell surface proteins. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5296–5300. doi: 10.1073/pnas.91.12.5296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  9. Horowitz M. C., Fields A., DeMeo D., Qian H. Y., Bothwell A. L., Trepman E. Expression and regulation of Ly-6 differentiation antigens by murine osteoblasts. Endocrinology. 1994 Sep;135(3):1032–1043. doi: 10.1210/endo.135.3.7520861. [DOI] [PubMed] [Google Scholar]
  10. MacDonald B. R., Takahashi N., McManus L. M., Holahan J., Mundy G. R., Roodman G. D. Formation of multinucleated cells that respond to osteotropic hormones in long term human bone marrow cultures. Endocrinology. 1987 Jun;120(6):2326–2333. doi: 10.1210/endo-120-6-2326. [DOI] [PubMed] [Google Scholar]
  11. Mao M., Yu M., Tong J. H., Ye J., Zhu J., Huang Q. H., Fu G., Yu L., Zhao S. Y., Waxman S. RIG-E, a human homolog of the murine Ly-6 family, is induced by retinoic acid during the differentiation of acute promyelocytic leukemia cell. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5910–5914. doi: 10.1073/pnas.93.12.5910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Medof M. E., Nagarajan S., Tykocinski M. L. Cell-surface engineering with GPI-anchored proteins. FASEB J. 1996 Apr;10(5):574–586. doi: 10.1096/fasebj.10.5.8621057. [DOI] [PubMed] [Google Scholar]
  13. Nosjean O., Briolay A., Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. Biochim Biophys Acta. 1997 Sep 8;1331(2):153–186. doi: 10.1016/s0304-4157(97)00005-1. [DOI] [PubMed] [Google Scholar]
  14. Oursler M. J. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Miner Res. 1994 Apr;9(4):443–452. doi: 10.1002/jbmr.5650090402. [DOI] [PubMed] [Google Scholar]
  15. Pfeilschifter J., Mundy G. R. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2024–2028. doi: 10.1073/pnas.84.7.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pfeilschifter J., Seyedin S. M., Mundy G. R. Transforming growth factor beta inhibits bone resorption in fetal rat long bone cultures. J Clin Invest. 1988 Aug;82(2):680–685. doi: 10.1172/JCI113647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Raisz L. G., Niemann I. Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology. 1969 Sep;85(3):446–452. doi: 10.1210/endo-85-3-446. [DOI] [PubMed] [Google Scholar]
  18. Reddy S. V., Takahashi S., Dallas M., Williams R. E., Neckers L., Roodman G. D. Interleukin-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumors of bone. J Bone Miner Res. 1994 May;9(5):753–757. doi: 10.1002/jbmr.5650090522. [DOI] [PubMed] [Google Scholar]
  19. Roodman G. D. Advances in bone biology: the osteoclast. Endocr Rev. 1996 Aug;17(4):308–332. doi: 10.1210/edrv-17-4-308. [DOI] [PubMed] [Google Scholar]
  20. Rooney I. A., Heuser J. E., Atkinson J. P. GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells. J Clin Invest. 1996 Apr 1;97(7):1675–1686. doi: 10.1172/JCI118594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simonet W. S., Lacey D. L., Dunstan C. R., Kelley M., Chang M. S., Lüthy R., Nguyen H. Q., Wooden S., Bennett L., Boone T. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997 Apr 18;89(2):309–319. doi: 10.1016/s0092-8674(00)80209-3. [DOI] [PubMed] [Google Scholar]
  22. Solomon K. R., Rudd C. E., Finberg R. W. The association between glycosylphosphatidylinositol-anchored proteins and heterotrimeric G protein alpha subunits in lymphocytes. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6053–6058. doi: 10.1073/pnas.93.12.6053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  24. Takahashi N., Yamana H., Yoshiki S., Roodman G. D., Mundy G. R., Jones S. J., Boyde A., Suda T. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology. 1988 Apr;122(4):1373–1382. doi: 10.1210/endo-122-4-1373. [DOI] [PubMed] [Google Scholar]
  25. Takahashi S., Reddy S. V., Chirgwin J. M., Devlin R., Haipek C., Anderson J., Roodman G. D. Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. J Biol Chem. 1994 Nov 18;269(46):28696–28701. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES