Abstract
Although matrix metalloproteinases (MMPs) are expressed in abundance in arterial aneurysms, their contribution to arterial wall degeneration, dilation, and rupture has not been determined. We investigated MMP function in a rat model of aneurysm associated with arterial dilation, elastin loss, medial invasion by mononuclear inflammatory cells, and MMP upregulation. Rupture was correlated with increased gelatinase B (MMP-9) and activated gelatinase A (MMP-2). Syngeneic rat smooth muscle cells retrovirally transfected with tissue inhibitor of matrix metalloproteinases (TIMP)-1 cDNA (LTSN) or with the vector alone as a control (LXSN) were seeded onto the luminal surface of the vessels. The seeding of LTSN cells resulted in TIMP-1 local overexpression. The seeding with LTSN cells, but not LXSN cells, decreased MMP-9, activated MMP-2 and 28-kD caseinase and elastase activity, preserved elastin in the media, and prevented aneurysmal degeneration and rupture. We conclude that MMP overexpression is responsible for aneurysmal degeneration and rupture in this rat model and that local pharmacological blockade might be a reasonable strategy for controlling the formation of aneurysms in humans.
Full Text
The Full Text of this article is available as a PDF (466.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S. R., Conner G. E., Nagase H., Neuhaus I., Woessner J. F., Jr Characterization of rat uterine matrilysin and its cDNA. Relationship to human pump-1 and activation of procollagenases. J Biol Chem. 1995 Jul 7;270(27):16016–16022. doi: 10.1074/jbc.270.27.16016. [DOI] [PubMed] [Google Scholar]
- Allaire E., Bruneval P., Mandet C., Becquemin J. P., Michel J. B. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery. 1997 Jul;122(1):73–81. doi: 10.1016/s0039-6060(97)90267-1. [DOI] [PubMed] [Google Scholar]
- Allaire E., Guettier C., Bruneval P., Plissonnier D., Michel J. B. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg. 1994 Mar;19(3):446–456. doi: 10.1016/s0741-5214(94)70071-0. [DOI] [PubMed] [Google Scholar]
- Allaire E., Mandet C., Bruneval P., Bensenane S., Becquemin J. P., Michel J. B. Cell and extracellular matrix rejection in arterial concordant and discordant xenografts in the rat. Transplantation. 1996 Sep 27;62(6):794–803. doi: 10.1097/00007890-199609270-00017. [DOI] [PubMed] [Google Scholar]
- Anidjar S., Kieffer E. Pathogenesis of acquired aneurysms of the abdominal aorta. Ann Vasc Surg. 1992 May;6(3):298–305. doi: 10.1007/BF02000279. [DOI] [PubMed] [Google Scholar]
- Anidjar S., Salzmann J. L., Gentric D., Lagneau P., Camilleri J. P., Michel J. B. Elastase-induced experimental aneurysms in rats. Circulation. 1990 Sep;82(3):973–981. doi: 10.1161/01.cir.82.3.973. [DOI] [PubMed] [Google Scholar]
- Baxter B. T., McGee G. S., Shively V. P., Drummond I. A., Dixit S. N., Yamauchi M., Pearce W. H. Elastin content, cross-links, and mRNA in normal and aneurysmal human aorta. J Vasc Surg. 1992 Aug;16(2):192–200. [PubMed] [Google Scholar]
- Bendeck M. P., Zempo N., Clowes A. W., Galardy R. E., Reidy M. A. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res. 1994 Sep;75(3):539–545. doi: 10.1161/01.res.75.3.539. [DOI] [PubMed] [Google Scholar]
- Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
- Brophy C. M., Reilly J. M., Smith G. J., Tilson M. D. The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann Vasc Surg. 1991 May;5(3):229–233. doi: 10.1007/BF02329378. [DOI] [PubMed] [Google Scholar]
- Butler G. S., Will H., Atkinson S. J., Murphy G. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem. 1997 Mar 1;244(2):653–657. doi: 10.1111/j.1432-1033.1997.t01-1-00653.x. [DOI] [PubMed] [Google Scholar]
- Camiolo S. M., Siuta M. R., Madeja J. M. Improved medium for extraction of plasminogen activator from tissue. Prep Biochem. 1982;12(4):297–305. doi: 10.1080/00327488208065678. [DOI] [PubMed] [Google Scholar]
- Carmeliet P., Moons L., Lijnen R., Baes M., Lemaître V., Tipping P., Drew A., Eeckhout Y., Shapiro S., Lupu F. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997 Dec;17(4):439–444. doi: 10.1038/ng1297-439. [DOI] [PubMed] [Google Scholar]
- Chesler L., Golde D. W., Bersch N., Johnson M. D. Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1. Blood. 1995 Dec 15;86(12):4506–4515. [PubMed] [Google Scholar]
- Clowes A. W., Clowes M. M., Au Y. P., Reidy M. A., Belin D. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res. 1990 Jul;67(1):61–67. doi: 10.1161/01.res.67.1.61. [DOI] [PubMed] [Google Scholar]
- Corcoran M. L., Stetler-Stevenson W. G. Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism. J Biol Chem. 1995 Jun 2;270(22):13453–13459. doi: 10.1074/jbc.270.22.13453. [DOI] [PubMed] [Google Scholar]
- Dean D. D., Martel-Pelletier J., Pelletier J. P., Howell D. S., Woessner J. F., Jr Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989 Aug;84(2):678–685. doi: 10.1172/JCI114215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobrin P. B., Baker W. H., Gley W. C. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch Surg. 1984 Apr;119(4):405–409. doi: 10.1001/archsurg.1984.01390160041009. [DOI] [PubMed] [Google Scholar]
- Ernst C. B. Abdominal aortic aneurysm. N Engl J Med. 1993 Apr 22;328(16):1167–1172. doi: 10.1056/NEJM199304223281607. [DOI] [PubMed] [Google Scholar]
- Feldmann M., Brennan F. M., Maini R. N. Rheumatoid arthritis. Cell. 1996 May 3;85(3):307–310. doi: 10.1016/s0092-8674(00)81109-5. [DOI] [PubMed] [Google Scholar]
- Forough R., Koyama N., Hasenstab D., Lea H., Clowes M., Nikkari S. T., Clowes A. W. Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res. 1996 Oct;79(4):812–820. doi: 10.1161/01.res.79.4.812. [DOI] [PubMed] [Google Scholar]
- Forough R., Nikkari S. T., Hasenstab D., Lea H., Clowes A. W. Cloning and characterization of a cDNA encoding the baboon tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). Gene. 1995 Oct 3;163(2):267–271. doi: 10.1016/0378-1119(95)00343-5. [DOI] [PubMed] [Google Scholar]
- Freestone T., Turner R. J., Coady A., Higman D. J., Greenhalgh R. M., Powell J. T. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1145–1151. doi: 10.1161/01.atv.15.8.1145. [DOI] [PubMed] [Google Scholar]
- Gregory A. K., Yin N. X., Capella J., Xia S., Newman K. M., Tilson M. D. Features of autoimmunity in the abdominal aortic aneurysm. Arch Surg. 1996 Jan;131(1):85–88. doi: 10.1001/archsurg.1996.01430130087017. [DOI] [PubMed] [Google Scholar]
- Holmes D. R., López-Candales A., Liao S., Thompson R. W. Smooth muscle cell apoptosis and p53 expression in human abdominal aortic aneurysms. Ann N Y Acad Sci. 1996 Nov 18;800:286–287. doi: 10.1111/j.1749-6632.1996.tb33334.x. [DOI] [PubMed] [Google Scholar]
- Katsuda S., Okada Y., Okada Y., Imai K., Nakanishi I. Matrix metalloproteinase-9 (92-kd gelatinase/type IV collagenase equals gelatinase B) can degrade arterial elastin. Am J Pathol. 1994 Nov;145(5):1208–1218. [PMC free article] [PubMed] [Google Scholar]
- Koch A. E., Haines G. K., Rizzo R. J., Radosevich J. A., Pope R. M., Robinson P. G., Pearce W. H. Human abdominal aortic aneurysms. Immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol. 1990 Nov;137(5):1199–1213. [PMC free article] [PubMed] [Google Scholar]
- Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995 Jun 1;91(11):2844–2850. doi: 10.1161/01.cir.91.11.2844. [DOI] [PubMed] [Google Scholar]
- MacSweeney S. T., Powell J. T., Greenhalgh R. M. Pathogenesis of abdominal aortic aneurysm. Br J Surg. 1994 Jul;81(7):935–941. doi: 10.1002/bjs.1800810704. [DOI] [PubMed] [Google Scholar]
- McMillan W. D., Patterson B. K., Keen R. R., Shively V. P., Cipollone M., Pearce W. H. In situ localization and quantification of mRNA for 92-kD type IV collagenase and its inhibitor in aneurysmal, occlusive, and normal aorta. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1139–1144. doi: 10.1161/01.atv.15.8.1139. [DOI] [PubMed] [Google Scholar]
- Mecham R. P., Broekelmann T. J., Fliszar C. J., Shapiro S. D., Welgus H. G., Senior R. M. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis. J Biol Chem. 1997 Jul 18;272(29):18071–18076. doi: 10.1074/jbc.272.29.18071. [DOI] [PubMed] [Google Scholar]
- Mecham R. P., Broekelmann T. J., Fliszar C. J., Shapiro S. D., Welgus H. G., Senior R. M. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis. J Biol Chem. 1997 Jul 18;272(29):18071–18076. doi: 10.1074/jbc.272.29.18071. [DOI] [PubMed] [Google Scholar]
- Mesh C. L., Baxter B. T., Pearce W. H., Chisholm R. L., McGee G. S., Yao J. S. Collagen and elastin gene expression in aortic aneurysms. Surgery. 1992 Aug;112(2):256–262. [PubMed] [Google Scholar]
- Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
- Murphy G., Cockett M. I., Ward R. V., Docherty A. J. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J. 1991 Jul 1;277(Pt 1):277–279. doi: 10.1042/bj2770277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman K. M., Jean-Claude J., Li H., Scholes J. V., Ogata Y., Nagase H., Tilson M. D. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vasc Surg. 1994 Nov;20(5):814–820. doi: 10.1016/s0741-5214(94)70169-5. [DOI] [PubMed] [Google Scholar]
- Newman K. M., Ogata Y., Malon A. M., Irizarry E., Gandhi R. H., Nagase H., Tilson M. D. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler Thromb. 1994 Aug;14(8):1315–1320. doi: 10.1161/01.atv.14.8.1315. [DOI] [PubMed] [Google Scholar]
- Okada Y., Morodomi T., Enghild J. J., Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. doi: 10.1111/j.1432-1033.1990.tb19462.x. [DOI] [PubMed] [Google Scholar]
- Okada Y., Nagase H., Harris E. D., Jr Matrix metalloproteinases 1, 2, and 3 from rheumatoid synovial cells are sufficient to destroy joints. J Rheumatol. 1987 May;14(Spec No):41–42. [PubMed] [Google Scholar]
- Pearce W. H., Sweis I., Yao J. S., McCarthy W. J., Koch A. E. Interleukin-1 beta and tumor necrosis factor-alpha release in normal and diseased human infrarenal aortas. J Vasc Surg. 1992 Nov;16(5):784–789. [PubMed] [Google Scholar]
- Pei D., Weiss S. J. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem. 1996 Apr 12;271(15):9135–9140. doi: 10.1074/jbc.271.15.9135. [DOI] [PubMed] [Google Scholar]
- Petrinec D., Liao S., Holmes D. R., Reilly J. M., Parks W. C., Thompson R. W. Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J Vasc Surg. 1996 Feb;23(2):336–346. doi: 10.1016/s0741-5214(96)70279-3. [DOI] [PubMed] [Google Scholar]
- Sarén P., Welgus H. G., Kovanen P. T. TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol. 1996 Nov 1;157(9):4159–4165. [PubMed] [Google Scholar]
- Senior R. M., Griffin G. L., Fliszar C. J., Shapiro S. D., Goldberg G. I., Welgus H. G. Human 92- and 72-kilodalton type IV collagenases are elastases. J Biol Chem. 1991 Apr 25;266(12):7870–7875. [PubMed] [Google Scholar]
- Shapiro S. D., Kobayashi D. K., Ley T. J. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem. 1993 Nov 15;268(32):23824–23829. [PubMed] [Google Scholar]
- Shipley J. M., Doyle G. A., Fliszar C. J., Ye Q. Z., Johnson L. L., Shapiro S. D., Welgus H. G., Senior R. M. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J Biol Chem. 1996 Feb 23;271(8):4335–4341. doi: 10.1074/jbc.271.8.4335. [DOI] [PubMed] [Google Scholar]
- Sorsa T., Lindy O., Konttinen Y. T., Suomalainen K., Ingman T., Saari H., Halinen S., Lee H. M., Golub L. M., Hall J. Doxycycline in the protection of serum alpha-1-antitrypsin from human neutrophil collagenase and gelatinase. Antimicrob Agents Chemother. 1993 Mar;37(3):592–594. doi: 10.1128/aac.37.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starcher B., Conrad M. A role for neutrophil elastase in the progression of solar elastosis. Connect Tissue Res. 1995;31(2):133–140. doi: 10.3109/03008209509028401. [DOI] [PubMed] [Google Scholar]
- Thompson R. W., Holmes D. R., Mertens R. A., Liao S., Botney M. D., Mecham R. P., Welgus H. G., Parks W. C. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest. 1995 Jul;96(1):318–326. doi: 10.1172/JCI118037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilson M. D. Similarities of an autoantigen in aneurysmal disease of the human abdominal aorta to a 36-kDa microfibril-associated bovine aortic glycoprotein. Biochem Biophys Res Commun. 1995 Aug 4;213(1):40–43. doi: 10.1006/bbrc.1995.2095. [DOI] [PubMed] [Google Scholar]
- Vine N., Powell J. T. Metalloproteinases in degenerative aortic disease. Clin Sci (Lond) 1991 Aug;81(2):233–239. doi: 10.1042/cs0810233. [DOI] [PubMed] [Google Scholar]
- Zempo N., Kenagy R. D., Au Y. P., Bendeck M., Clowes M. M., Reidy M. A., Clowes A. W. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg. 1994 Aug;20(2):209–217. doi: 10.1016/0741-5214(94)90008-6. [DOI] [PubMed] [Google Scholar]