Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Oct 1;102(7):1431–1443. doi: 10.1172/JCI3248

Apoptosis mediated by Fas but not tumor necrosis factor receptor 1 prevents chronic disease in mice infected with murine cytomegalovirus.

M Fleck 1, E R Kern 1, T Zhou 1, J Podlech 1, W Wintersberger 1, C K Edwards 3rd 1, J D Mountz 1
PMCID: PMC508991  PMID: 9769336

Abstract

The role of Fas- and TNF-receptor 1 (TNF-R1)-mediated apoptosis in the clearance of virally infected cells and in the regulation of the immune response was analyzed after murine cytomegalovirus (MCMV) infection of C57BL/6 (B6)-+/+ mice, Fas-mutant B6-lpr/lpr mice, TNF-R1 knockout B6-tnfr0/0 mice, and double-deficient B6-tnfr0/0 lpr/lpr mice. There was approximately equivalent clearance of MCMV in B6-+/+, B6-tnfr0/0, and B6-lpr/lpr mice, and by day 28 no infectious virus could be detected in the liver, kidney, lung, or peritoneal exudate. However, delayed virus clearance was observed in B6-tnfr0/0 lpr/lpr mice. An acute inflammatory response occurred in the liver, lung, and kidney of all mice, which was most severe 7 d after MCMV infection, but resolved by day 28 in B6-+/+ and B6-tnfr0/0 mice, but not in B6-lpr/lpr or B6-tnfr0/0 lpr/lpr mice. These results indicate that apoptosis mediated by either Fas or TNF-R1 is sufficient for rapid clearance of the virus. However, apoptosis induced by Fas, but not TNF-R1, is required for the downmodulation of the immune response to the virus and prevention of a chronic inflammatory reaction.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson M. R., Tough T. W., Davis-Smith T., Braddy S., Falk B., Schooley K. A., Goodwin R. G., Smith C. A., Ramsdell F., Lynch D. H. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med. 1995 Jan 1;181(1):71–77. doi: 10.1084/jem.181.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando K., Hiroishi K., Kaneko T., Moriyama T., Muto Y., Kayagaki N., Yagita H., Okumura K., Imawari M. Perforin, Fas/Fas ligand, and TNF-alpha pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL. J Immunol. 1997 Jun 1;158(11):5283–5291. [PubMed] [Google Scholar]
  3. Banks T. A., Rouse B. T. Herpesviruses--immune escape artists? Clin Infect Dis. 1992 Apr;14(4):933–941. doi: 10.1093/clinids/14.4.933. [DOI] [PubMed] [Google Scholar]
  4. Bartholomaeus W. N., O'Donoghue H., Foti D., Lawson C. M., Shellam G. R., Reed W. D. Multiple autoantibodies following cytomegalovirus infection: virus distribution and specificity of autoantibodies. Immunology. 1988 Jul;64(3):397–405. [PMC free article] [PubMed] [Google Scholar]
  5. Brunner T., Mogil R. J., LaFace D., Yoo N. J., Mahboubi A., Echeverri F., Martin S. J., Force W. R., Lynch D. H., Ware C. F. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 1995 Feb 2;373(6513):441–444. doi: 10.1038/373441a0. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. L., Eisenberg R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–269. doi: 10.1146/annurev.iy.09.040191.001331. [DOI] [PubMed] [Google Scholar]
  7. Collins T., Pomeroy C., Jordan M. C. Detection of latent cytomegalovirus DNA in diverse organs of mice. J Infect Dis. 1993 Sep;168(3):725–729. doi: 10.1093/infdis/168.3.725. [DOI] [PubMed] [Google Scholar]
  8. Cuff S., Ruby J. Evasion of apoptosis by DNA viruses. Immunol Cell Biol. 1996 Dec;74(6):527–537. doi: 10.1038/icb.1996.86. [DOI] [PubMed] [Google Scholar]
  9. Datta S. K., Manny N., Andrzejewski C., André-Schwartz J., Schwartz R. S. Genetic studies of autoimmunity and retrovirus expression in crosses of New Zealand black mice I. Xenotropic virus. J Exp Med. 1978 Mar 1;147(3):854–871. doi: 10.1084/jem.147.3.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dhein J., Walczak H., Bäumler C., Debatin K. M., Krammer P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) Nature. 1995 Feb 2;373(6513):438–441. doi: 10.1038/373438a0. [DOI] [PubMed] [Google Scholar]
  11. Dixon F. J., Oldstone M. B., Tonietti G. Virus-induced immune-complex-type glomerulonephritis. Transplant Proc. 1969 Dec;1(4):945–948. [PubMed] [Google Scholar]
  12. Farrell H. E., Vally H., Lynch D. M., Fleming P., Shellam G. R., Scalzo A. A., Davis-Poynter N. J. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature. 1997 Apr 3;386(6624):510–514. doi: 10.1038/386510a0. [DOI] [PubMed] [Google Scholar]
  13. Gardner M. B., Ihle J. N., Pillarisetty R. J., Talal N., Dubois E. L., Levy J. A. Type C virus expression and host response in diet-cured NZB/W mice. Nature. 1977 Jul 28;268(5618):341–344. doi: 10.1038/268341a0. [DOI] [PubMed] [Google Scholar]
  14. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilkeson G. S., Ruiz P., Pritchard A. J., Pisetsky D. S. Genetic control of inflammatory arthritis and glomerulonephritis in congenic lpr mice and their F1 hybrids. J Autoimmun. 1991 Aug;4(4):595–606. doi: 10.1016/0896-8411(91)90179-g. [DOI] [PubMed] [Google Scholar]
  16. Green D. R., Scott D. W. Activation-induced apoptosis in lymphocytes. Curr Opin Immunol. 1994 Jun;6(3):476–487. doi: 10.1016/0952-7915(94)90130-9. [DOI] [PubMed] [Google Scholar]
  17. Hashimoto S., Ishii A., Yonehara S. The E1b oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int Immunol. 1991 Apr;3(4):343–351. doi: 10.1093/intimm/3.4.343. [DOI] [PubMed] [Google Scholar]
  18. Haspel M. V., Onodera T., Prabhakar B. S., Horita M., Suzuki H., Notkins A. L. Virus-induced autoimmunity: monoclonal antibodies that react with endocrine tissues. Science. 1983 Apr 15;220(4594):304–306. doi: 10.1126/science.6301002. [DOI] [PubMed] [Google Scholar]
  19. Hawkins C. J., Uren A. G., Häcker G., Medcalf R. L., Vaux D. L. Inhibition of interleukin 1 beta-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13786–13790. doi: 10.1073/pnas.93.24.13786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heise M. T., Virgin H. W., 4th The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. J Virol. 1995 Feb;69(2):904–909. doi: 10.1128/jvi.69.2.904-909.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Herndon F. J., Hsu H. C., Mountz J. D. Increased apoptosis of CD45RO- T cells with aging. Mech Ageing Dev. 1997 Mar;94(1-3):123–134. doi: 10.1016/s0047-6374(97)01882-4. [DOI] [PubMed] [Google Scholar]
  22. Hiromatsu K., Usami J., Aoki Y., Makino M., Yoshikai Y. Accelerated progression of a murine retrovirus-induced immunodeficiency syndrome in Fas mutant C57BL/6 lpr/lpr mice. Microbiol Immunol. 1997;41(3):221–227. doi: 10.1111/j.1348-0421.1997.tb01194.x. [DOI] [PubMed] [Google Scholar]
  23. Hudson J. B. The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Arch Virol. 1979;62(1):1–29. doi: 10.1007/BF01314900. [DOI] [PubMed] [Google Scholar]
  24. Jacob C. O., McDevitt H. O. Tumour necrosis factor-alpha in murine autoimmune 'lupus' nephritis. Nature. 1988 Jan 28;331(6154):356–358. doi: 10.1038/331356a0. [DOI] [PubMed] [Google Scholar]
  25. Jacob C. O. Studies on the role of tumor necrosis factor in murine and human autoimmunity. J Autoimmun. 1992 Apr;5 (Suppl A):133–143. doi: 10.1016/0896-8411(92)90028-o. [DOI] [PubMed] [Google Scholar]
  26. Jacob C. O. Tumor necrosis factor alpha in autoimmunity: pretty girl or old witch? Immunol Today. 1992 Apr;13(4):122–125. doi: 10.1016/0167-5699(92)90107-i. [DOI] [PubMed] [Google Scholar]
  27. Ju S. T., Panka D. J., Cui H., Ettinger R., el-Khatib M., Sherr D. H., Stanger B. Z., Marshak-Rothstein A. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 1995 Feb 2;373(6513):444–448. doi: 10.1038/373444a0. [DOI] [PubMed] [Google Scholar]
  28. Kiener P. A., Davis P. M., Starling G. C., Mehlin C., Klebanoff S. J., Ledbetter J. A., Liles W. C. Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J Exp Med. 1997 Apr 21;185(8):1511–1516. doi: 10.1084/jem.185.8.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koffron A. J., Mueller K. H., Kaufman D. B., Stuart F. P., Patterson B., Abecassis M. I. Direct evidence using in situ polymerase chain reaction that the endothelial cell and T-lymphocyte harbor latent murine cytomegalovirus. Scand J Infect Dis Suppl. 1995;99:61–62. [PubMed] [Google Scholar]
  30. Kondo K., Kaneshima H., Mocarski E. S. Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11879–11883. doi: 10.1073/pnas.91.25.11879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kondo K., Mocarski E. S. Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand J Infect Dis Suppl. 1995;99:63–67. [PubMed] [Google Scholar]
  32. Koszinowski U. H., Keil G. M., Schwarz H., Schickedanz J., Reddehase M. J. A nonstructural polypeptide encoded by immediate-early transcription unit 1 of murine cytomegalovirus is recognized by cytolytic T lymphocytes. J Exp Med. 1987 Jul 1;166(1):289–294. doi: 10.1084/jem.166.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kurz S., Steffens H. P., Mayer A., Harris J. R., Reddehase M. J. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol. 1997 Apr;71(4):2980–2987. doi: 10.1128/jvi.71.4.2980-2987.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kurz S., Steffens H. P., Mayer A., Harris J. R., Reddehase M. J. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol. 1997 Apr;71(4):2980–2987. doi: 10.1128/jvi.71.4.2980-2987.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lazdins J. K., Grell M., Walker M. R., Woods-Cook K., Scheurich P., Pfizenmaier K. Membrane tumor necrosis factor (TNF) induced cooperative signaling of TNFR60 and TNFR80 favors induction of cell death rather than virus production in HIV-infected T cells. J Exp Med. 1997 Jan 6;185(1):81–90. doi: 10.1084/jem.185.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lehmann P. V., Sercarz E. E., Forsthuber T., Dayan C. M., Gammon G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today. 1993 May;14(5):203–208. doi: 10.1016/0167-5699(93)90163-F. [DOI] [PubMed] [Google Scholar]
  37. Lenardo M. J. Fas and the art of lymphocyte maintenance. J Exp Med. 1996 Mar 1;183(3):721–724. doi: 10.1084/jem.183.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lohman B. L., Razvi E. S., Welsh R. M. T-lymphocyte downregulation after acute viral infection is not dependent on CD95 (Fas) receptor-ligand interactions. J Virol. 1996 Nov;70(11):8199–8203. doi: 10.1128/jvi.70.11.8199-8203.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lowin B., Hahne M., Mattmann C., Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994 Aug 25;370(6491):650–652. doi: 10.1038/370650a0. [DOI] [PubMed] [Google Scholar]
  40. Messerle M., Keil G. M., Schneider K., Koszinowski U. H. Characterization of the murine cytomegalovirus genes encoding the major DNA binding protein and the ICP18.5 homolog. Virology. 1992 Nov;191(1):355–367. doi: 10.1016/0042-6822(92)90198-x. [DOI] [PubMed] [Google Scholar]
  41. Miura M., Zhu H., Rotello R., Hartwieg E. A., Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 1993 Nov 19;75(4):653–660. doi: 10.1016/0092-8674(93)90486-a. [DOI] [PubMed] [Google Scholar]
  42. Morahan P. S., Morse S. S., McGeorge M. G. Macrophage extrinsic antiviral activity during herpes simplex virus infection. J Gen Virol. 1980 Feb;46(2):291–300. doi: 10.1099/0022-1317-46-2-291. [DOI] [PubMed] [Google Scholar]
  43. Mori T., Ando K., Tanaka K., Ikeda Y., Koga Y. Fas-mediated apoptosis of the hematopoietic progenitor cells in mice infected with murine cytomegalovirus. Blood. 1997 May 15;89(10):3565–3573. [PubMed] [Google Scholar]
  44. Mountz J. D., Baker T. J., Borcherding D. R., Bluethmann H., Zhou T., Edwards C. K., 3rd Increased susceptibility of fas mutant MRL-lpr/lpr mice to staphylococcal enterotoxin B-induced septic shock. J Immunol. 1995 Nov 15;155(10):4829–4837. [PubMed] [Google Scholar]
  45. Mountz J. D., Zhou T., Su X., Cheng J., Pierson M., Bluethmann H., Edwards C. K., 3rd Autoimmune disease results from multiple interactive defects in apoptosis induction molecules and signaling pathways. Behring Inst Mitt. 1996 Oct;(97):200–219. [PubMed] [Google Scholar]
  46. Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. doi: 10.1016/s0092-8674(00)81874-7. [DOI] [PubMed] [Google Scholar]
  47. Nauclér C. S., Larsson S., Möller E. A novel mechanism for virus-induced autoimmunity in humans. Immunol Rev. 1996 Aug;152:175–192. doi: 10.1111/j.1600-065x.1996.tb00916.x. [DOI] [PubMed] [Google Scholar]
  48. Newkirk M. M., Watanabe Duffy K. N., Leclerc J., Lambert N., Shiroky J. B. Detection of cytomegalovirus, Epstein-Barr virus and herpes virus-6 in patients with rheumatoid arthritis with or without Sjögren's syndrome. Br J Rheumatol. 1994 Apr;33(4):317–322. doi: 10.1093/rheumatology/33.4.317. [DOI] [PubMed] [Google Scholar]
  49. Orange J. S., Wang B., Terhorst C., Biron C. A. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med. 1995 Oct 1;182(4):1045–1056. doi: 10.1084/jem.182.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Papiernik M., Pontoux C., Golstein P. Non-exclusive Fas control and age dependence of viral superantigen-induced clonal deletion in lupus-prone mice. Eur J Immunol. 1995 Jun;25(6):1517–1523. doi: 10.1002/eji.1830250607. [DOI] [PubMed] [Google Scholar]
  51. Price P., Olver S. D., Gibbons A. E., Shellam G. R. B-cell activation following murine cytomegalovirus infection: implications for autoimmunity. Immunology. 1993 Jan;78(1):14–21. [PMC free article] [PubMed] [Google Scholar]
  52. Quinnan G. V., Manischewitz J. E., Ennis F. A. Cytotoxic T lymphocyte response to murine cytomegalovirus infection. Nature. 1978 Jun 15;273(5663):541–543. doi: 10.1038/273541a0. [DOI] [PubMed] [Google Scholar]
  53. Rawlinson W. D., Farrell H. E., Barrell B. G. Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol. 1996 Dec;70(12):8833–8849. doi: 10.1128/jvi.70.12.8833-8849.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Reddehase M. J., Balthesen M., Rapp M., Jonjić S., Pavić I., Koszinowski U. H. The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med. 1994 Jan 1;179(1):185–193. doi: 10.1084/jem.179.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Root-Bernstein R. S. Preliminary evidence for idiotype-antiidiotype immune complexes cross-reactive with lymphocyte antigens in AIDS and lupus. Med Hypotheses. 1995 Jan;44(1):20–27. doi: 10.1016/0306-9877(95)90296-1. [DOI] [PubMed] [Google Scholar]
  56. Rothstein T. L., Wang J. K., Panka D. J., Foote L. C., Wang Z., Stanger B., Cui H., Ju S. T., Marshak-Rothstein A. Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature. 1995 Mar 9;374(6518):163–165. doi: 10.1038/374163a0. [DOI] [PubMed] [Google Scholar]
  57. Ruzek M. C., Miller A. H., Opal S. M., Pearce B. D., Biron C. A. Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J Exp Med. 1997 Apr 7;185(7):1185–1192. doi: 10.1084/jem.185.7.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Schmader K., Henry S. C., Rahija R. J., Yu Y., Daley G. G., Hamilton J. D. Mouse cytomegalovirus reactivation in severe combined immune deficient mice after implantation of latently infected salivary gland. J Infect Dis. 1995 Aug;172(2):531–534. doi: 10.1093/infdis/172.2.531. [DOI] [PubMed] [Google Scholar]
  59. Schmid I., Uittenbogaart C. H., Keld B., Giorgi J. V. A rapid method for measuring apoptosis and dual-color immunofluorescence by single laser flow cytometry. J Immunol Methods. 1994 Apr 15;170(2):145–157. doi: 10.1016/0022-1759(94)90390-5. [DOI] [PubMed] [Google Scholar]
  60. Selgrade M. K., Collier A. M., Saxton L., Daniels M. J., Graham J. A. Comparison of the pathogenesis of murine cytomegalovirus in lung and liver following intraperitoneal or intratracheal infection. J Gen Virol. 1984 Mar;65(Pt 3):515–523. doi: 10.1099/0022-1317-65-3-515. [DOI] [PubMed] [Google Scholar]
  61. Selgrade M. K., Huang Y. S., Graham J. A., Huang C. H., Hu P. C. Humoral antibody response to individual viral proteins after murine cytomegalovirus infection. J Immunol. 1983 Dec;131(6):3032–3035. [PubMed] [Google Scholar]
  62. Shellam G. R., Allan J. E., Papadimitriou J. M., Bancroft G. J. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5104–5108. doi: 10.1073/pnas.78.8.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Sieg S., Huang Y., Kaplan D. Viral regulation of CD95 expression and apoptosis in T lymphocytes. J Immunol. 1997 Aug 1;159(3):1192–1199. [PubMed] [Google Scholar]
  64. Sieg S., Yildirim Z., Smith D., Kayagaki N., Yagita H., Huang Y., Kaplan D. Herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol. 1996 Dec;70(12):8747–8751. doi: 10.1128/jvi.70.12.8747-8751.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Spriggs M. K. One step ahead of the game: viral immunomodulatory molecules. Annu Rev Immunol. 1996;14:101–130. doi: 10.1146/annurev.immunol.14.1.101. [DOI] [PubMed] [Google Scholar]
  66. Stenger S., Mazzaccaro R. J., Uyemura K., Cho S., Barnes P. F., Rosat J. P., Sette A., Brenner M. B., Porcelli S. A., Bloom B. R. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997 Jun 13;276(5319):1684–1687. doi: 10.1126/science.276.5319.1684. [DOI] [PubMed] [Google Scholar]
  67. Sytwu H. K., Liblau R. S., McDevitt H. O. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity. 1996 Jul;5(1):17–30. doi: 10.1016/s1074-7613(00)80306-4. [DOI] [PubMed] [Google Scholar]
  68. Talal N. Immunologic and viral factors in autoimmune diseases. Med Clin North Am. 1977 Mar;61(2):205–215. doi: 10.1016/s0025-7125(16)31327-x. [DOI] [PubMed] [Google Scholar]
  69. Tanaka K., Koga Y., Lu Y. Y., Zhang X. Y., Wang Y., Kimura G., Nomoto K. Murine cytomegalovirus-associated pneumonitis in the lungs free of the virus. J Clin Invest. 1994 Sep;94(3):1019–1025. doi: 10.1172/JCI117415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Tewari M., Quan L. T., O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S., Dixit V. M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995 Jun 2;81(5):801–809. doi: 10.1016/0092-8674(95)90541-3. [DOI] [PubMed] [Google Scholar]
  71. Thome M., Schneider P., Hofmann K., Fickenscher H., Meinl E., Neipel F., Mattmann C., Burns K., Bodmer J. L., Schröter M. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997 Apr 3;386(6624):517–521. doi: 10.1038/386517a0. [DOI] [PubMed] [Google Scholar]
  72. Thorn J. J., Oxholm P., Andersen H. K. High levels of complement fixing antibodies against cytomegalovirus in patients with primary Sjögren's syndrome. Clin Exp Rheumatol. 1988 Jan-Mar;6(1):71–74. [PubMed] [Google Scholar]
  73. Tonietti G., Oldstone M. B., Dixon F. J. The effect of induced chronic viral infections on the immunologic diseases of New Zealand mice. J Exp Med. 1970 Jul 1;132(1):89–109. doi: 10.1084/jem.132.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Toro A. I., Ossa J. PCR activity of CMV in healthy CMV-seropositive individuals: does latency need redefinition? Res Virol. 1996 Jul-Aug;147(4):233–238. doi: 10.1016/0923-2516(96)89654-3. [DOI] [PubMed] [Google Scholar]
  75. Van Parijs L., Ibraghimov A., Abbas A. K. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity. 1996 Mar;4(3):321–328. doi: 10.1016/s1074-7613(00)80440-9. [DOI] [PubMed] [Google Scholar]
  76. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411–452. doi: 10.1146/annurev.iy.10.040192.002211. [DOI] [PubMed] [Google Scholar]
  77. Walsh C. M., Matloubian M., Liu C. C., Ueda R., Kurahara C. G., Christensen J. L., Huang M. T., Young J. D., Ahmed R., Clark W. R. Immune function in mice lacking the perforin gene. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10854–10858. doi: 10.1073/pnas.91.23.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Yoon J. W. The role of viruses and environmental factors in the induction of diabetes. Curr Top Microbiol Immunol. 1990;164:95–123. doi: 10.1007/978-3-642-75741-9_6. [DOI] [PubMed] [Google Scholar]
  79. Yoshida H., Sumichika H., Hamano S., He X., Minamishima Y., Kimura G., Nomoto K. Induction of apoptosis of T cells by infecting mice with murine cytomegalovirus. J Virol. 1995 Aug;69(8):4769–4775. doi: 10.1128/jvi.69.8.4769-4775.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Zhou T., Bluethmann H., Eldridge J., Berry K., Mountz J. D. Origin of CD4-CD8-B220+ T cells in MRL-lpr/lpr mice. Clues from a T cell receptor beta transgenic mouse. J Immunol. 1993 Apr 15;150(8 Pt 1):3651–3667. [PubMed] [Google Scholar]
  81. Zhou T., Edwards C. K., 3rd, Yang P., Wang Z., Bluethmann H., Mountz J. D. Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I. J Immunol. 1996 Apr 15;156(8):2661–2665. [PubMed] [Google Scholar]
  82. Zhu H., Shen Y., Shenk T. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol. 1995 Dec;69(12):7960–7970. doi: 10.1128/jvi.69.12.7960-7970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Zimmermann C., Rawiel M., Blaser C., Kaufmann M., Pircher H. Homeostatic regulation of CD8+ T cells after antigen challenge in the absence of Fas (CD95). Eur J Immunol. 1996 Dec;26(12):2903–2910. doi: 10.1002/eji.1830261215. [DOI] [PubMed] [Google Scholar]
  84. Zinkernagel R. M., Cooper S., Chambers J., Lazzarini R. A., Hengartner H., Arnheiter H. Virus-induced autoantibody response to a transgenic viral antigen. Nature. 1990 May 3;345(6270):68–71. doi: 10.1038/345068a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES