Abstract
To better understand the stage(s) of differentiation reached by B-type chronic lymphocytic leukemia (B-CLL) cells and to gain insight into the potential role of antigenic stimulation in the development and diversification of these cells, we analyzed the rearranged VH genes expressed by 83 B-CLL cells (64 IgM+ and 19 non-IgM+). Our results confirm and extend the observations of a bias in the use of certain VH, D, and JH genes among B-CLL cells. In addition, they indicate that the VH genes of approximately 50% of the IgM+ B-CLL cells and approximately 75% of the non-IgM+ B-CLL cells can exhibit somatic mutations. The presence of mutation varies according to the VH family expressed by the B-CLL cell (VH3 expressers displaying more mutation than VH1 and VH4 expressers). In addition, the extent of mutation can be sizeable with approximately 32% of the IgM+ cases and approximately 68% of the non-IgM+ cases differing by > 5% from the most similar germline gene. Approximately 20% of the mutated VH genes display replacement mutations in a pattern consistent with antigen selection. However, CDR3 characteristics (D and JH gene use and association and HCDR3 length, composition, and charge) suggest that selection for distinct B cell receptors (BCR) occurs in many more B-CLL cells. Based on these data, we suggest three prototypic BCR, representing the VH genes most frequently encountered in our study. These data suggest that many B-CLL cells have been previously stimulated, placing them in the "experienced" or "memory" CD5(+) B cell subset.
Full Text
The Full Text of this article is available as a PDF (315.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brezinschek H. P., Foster S. J., Brezinschek R. I., Dörner T., Domiati-Saad R., Lipsky P. E. Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(-)/IgM+ B cells. J Clin Invest. 1997 May 15;99(10):2488–2501. doi: 10.1172/JCI119433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai J., Humphries C., Richardson A., Tucker P. W. Extensive and selective mutation of a rearranged VH5 gene in human B cell chronic lymphocytic leukemia. J Exp Med. 1992 Oct 1;176(4):1073–1081. doi: 10.1084/jem.176.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang B., Casali P. The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today. 1994 Aug;15(8):367–373. doi: 10.1016/0167-5699(94)90175-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherepakhin V., Baird S. M., Meisenholder G. W., Kipps T. J. Common clonal origin of chronic lymphocytic leukemia and high-grade lymphoma of Richter's syndrome. Blood. 1993 Nov 15;82(10):3141–3147. [PubMed] [Google Scholar]
- Corbett S. J., Tomlinson I. M., Sonnhammer E. L., Buck D., Winter G. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, "minor" D segments or D-D recombination. J Mol Biol. 1997 Jul 25;270(4):587–597. doi: 10.1006/jmbi.1997.1141. [DOI] [PubMed] [Google Scholar]
- Deane M., Norton J. D. Immunoglobulin heavy chain variable region family usage is independent of tumor cell phenotype in human B lineage leukemias. Eur J Immunol. 1990 Oct;20(10):2209–2217. doi: 10.1002/eji.1830201009. [DOI] [PubMed] [Google Scholar]
- Dono M., Hashimoto S., Fais F., Trejo V., Allen S. L., Lichtman S. M., Schulman P., Vinciguerra V. P., Sellars B., Gregersen P. K. Evidence for progenitors of chronic lymphocytic leukemia B cells that undergo intraclonal differentiation and diversification. Blood. 1996 Feb 15;87(4):1586–1594. [PubMed] [Google Scholar]
- Ebeling S. B., Schutte M. E., Logtenberg T. Molecular analysis of VH and VL regions expressed in IgG-bearing chronic lymphocytic leukemia (CLL): further evidence that CLL is a heterogeneous group of tumors. Blood. 1993 Sep 1;82(5):1626–1631. [PubMed] [Google Scholar]
- Efremov D. G., Ivanovski M., Batista F. D., Pozzato G., Burrone O. R. IgM-producing chronic lymphocytic leukemia cells undergo immunoglobulin isotype-switching without acquiring somatic mutations. J Clin Invest. 1996 Jul 15;98(2):290–298. doi: 10.1172/JCI118792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fais F., Sellars B., Ghiotto F., Yan X. J., Dono M., Allen S. L., Budman D., Dittmar K., Kolitz J., Lichtman S. M. Examples of in vivo isotype class switching in IgM+ chronic lymphocytic leukemia B cells. J Clin Invest. 1996 Oct 1;98(7):1659–1666. doi: 10.1172/JCI118961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman D. F., Cho E. A., Goldman J., Carmack C. E., Besa E. C., Hardy R. R., Silberstein L. E. The role of clonal selection in the pathogenesis of an autoreactive human B cell lymphoma. J Exp Med. 1991 Sep 1;174(3):525–537. doi: 10.1084/jem.174.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman D. F., Moore J. S., Erikson J., Manz J., Goldman J., Nowell P. C., Silberstein L. E. Variable region gene analysis of an isotype-switched (IgA) variant of chronic lymphocytic leukemia. Blood. 1992 Nov 1;80(9):2287–2297. [PubMed] [Google Scholar]
- Hardy R. R., Hayakawa K. Developmental origins, specificities and immunoglobulin gene biases of murine Ly-1 B cells. Int Rev Immunol. 1992;8(2-3):189–207. doi: 10.3109/08830189209055573. [DOI] [PubMed] [Google Scholar]
- Hashimoto S., Dono M., Wakai M., Allen S. L., Lichtman S. M., Schulman P., Vinciguerra V. P., Ferrarini M., Silver J., Chiorazzi N. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J Exp Med. 1995 Apr 1;181(4):1507–1517. doi: 10.1084/jem.181.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashimoto S., Wakai M., Silver J., Chiorazzi N. Biased usage of variable and constant-region Ig genes by IgG+, CD5+ human leukemic B cells. Ann N Y Acad Sci. 1992 May 4;651:477–479. doi: 10.1111/j.1749-6632.1992.tb24650.x. [DOI] [PubMed] [Google Scholar]
- Hillson J. L., Karr N. S., Oppliger I. R., Mannik M., Sasso E. H. The structural basis of germline-encoded VH3 immunoglobulin binding to staphylococcal protein A. J Exp Med. 1993 Jul 1;178(1):331–336. doi: 10.1084/jem.178.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu F. J., Levy R. Preferential use of the VH4 Ig gene family by diffuse large-cell lymphoma. Blood. 1995 Oct 15;86(8):3072–3082. [PubMed] [Google Scholar]
- Ikematsu W., Ikematsu H., Otsuka T., Okamura S., Kashiwagi S., Niho Y. Surface phenotype and immunoglobulin heavy chain gene usage in chronic B-cell leukemias. Ann N Y Acad Sci. 1995 Sep 29;764:492–495. doi: 10.1111/j.1749-6632.1995.tb55871.x. [DOI] [PubMed] [Google Scholar]
- Jeske D. J., Jarvis J., Milstein C., Capra J. D. Junctional diversity is essential to antibody activity. J Immunol. 1984 Sep;133(3):1090–1092. [PubMed] [Google Scholar]
- Johnson T. A., Rassenti L. Z., Kipps T. J. Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol. 1997 Jan 1;158(1):235–246. [PubMed] [Google Scholar]
- Jukes T. H., King J. L. Evolutionary nucleotide replacements in DNA. Nature. 1979 Oct 18;281(5732):605–606. doi: 10.1038/281605a0. [DOI] [PubMed] [Google Scholar]
- Katz J. B., Limpanasithikul W., Diamond B. Mutational analysis of an autoantibody: differential binding and pathogenicity. J Exp Med. 1994 Sep 1;180(3):925–932. doi: 10.1084/jem.180.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kipps T. J. Immunoglobulin genes in chronic lymphocytic leukemia. Blood Cells. 1993;19(3):615–632. [PubMed] [Google Scholar]
- Kipps T. J., Tomhave E., Chen P. P., Carson D. A. Autoantibody-associated kappa light chain variable region gene expressed in chronic lymphocytic leukemia with little or no somatic mutation. Implications for etiology and immunotherapy. J Exp Med. 1988 Mar 1;167(3):840–852. doi: 10.1084/jem.167.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kipps T. J., Tomhave E., Pratt L. F., Duffy S., Chen P. P., Carson D. A. Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5913–5917. doi: 10.1073/pnas.86.15.5913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korganow A. S., Martin T., Weber J. C., Lioure B., Lutz P., Knapp A. M., Pasquali J. L. Molecular analysis of rearranged VH genes during B cell chronic lymphocytic leukemia: intraclonal stability is frequent but not constant. Leuk Lymphoma. 1994 Jun;14(1-2):55–69. doi: 10.3109/10428199409049651. [DOI] [PubMed] [Google Scholar]
- Kraj P., Rao S. P., Glas A. M., Hardy R. R., Milner E. C., Silberstein L. E. The human heavy chain Ig V region gene repertoire is biased at all stages of B cell ontogeny, including early pre-B cells. J Immunol. 1997 Jun 15;158(12):5824–5832. [PubMed] [Google Scholar]
- Kussie P. H., Parhami-Seren B., Wysocki L. J., Margolies M. N. A single engineered amino acid substitution changes antibody fine specificity. J Immunol. 1994 Jan 1;152(1):146–152. [PubMed] [Google Scholar]
- Küppers R., Gause A., Rajewsky K. B cells of chronic lymphatic leukemia express V genes in unmutated form. Leuk Res. 1991;15(6):487–496. doi: 10.1016/0145-2126(91)90060-7. [DOI] [PubMed] [Google Scholar]
- Lam K. P., Kühn R., Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997 Sep 19;90(6):1073–1083. doi: 10.1016/s0092-8674(00)80373-6. [DOI] [PubMed] [Google Scholar]
- Leoni J., Ghiso J., Goñi F., Frangione B. The primary structure of the Fab fragment of protein KAU, a monoclonal immunoglobulin M cold agglutinin. J Biol Chem. 1991 Feb 15;266(5):2836–2842. [PubMed] [Google Scholar]
- Malisan F., Fluckiger A. C., Ho S., Guret C., Banchereau J., Martinez-Valdez H. B-chronic lymphocytic leukemias can undergo isotype switching in vivo and can be induced to differentiate and switch in vitro. Blood. 1996 Jan 15;87(2):717–724. [PubMed] [Google Scholar]
- Matolcsy A., Casali P., Nádor R. G., Liu Y. F., Knowles D. M. Molecular characterization of IgA- and/or IgG-switched chronic lymphocytic leukemia B cells. Blood. 1997 Mar 1;89(5):1732–1739. [PMC free article] [PubMed] [Google Scholar]
- Meeker T. C., Grimaldi J. C., O'Rourke R., Loeb J., Juliusson G., Einhorn S. Lack of detectable somatic hypermutation in the V region of the Ig H chain gene of a human chronic B lymphocytic leukemia. J Immunol. 1988 Dec 1;141(11):3994–3998. [PubMed] [Google Scholar]
- Milner E. C., Hufnagle W. O., Glas A. M., Suzuki I., Alexander C. Polymorphism and utilization of human VH Genes. Ann N Y Acad Sci. 1995 Sep 29;764:50–61. doi: 10.1111/j.1749-6632.1995.tb55806.x. [DOI] [PubMed] [Google Scholar]
- Pascual V., Capra J. D. VH4-21, a human VH gene segment overrepresented in the autoimmune repertoire. Arthritis Rheum. 1992 Jan;35(1):11–18. doi: 10.1002/art.1780350103. [DOI] [PubMed] [Google Scholar]
- Pascual V., Liu Y. J., Magalski A., de Bouteiller O., Banchereau J., Capra J. D. Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 1994 Jul 1;180(1):329–339. doi: 10.1084/jem.180.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascual V., Victor K., Lelsz D., Spellerberg M. B., Hamblin T. J., Thompson K. M., Randen I., Natvig J., Capra J. D., Stevenson F. K. Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype. J Immunol. 1991 Jun 15;146(12):4385–4391. [PubMed] [Google Scholar]
- Perlmutter R. M., Kearney J. F., Chang S. P., Hood L. E. Developmentally controlled expression of immunoglobulin VH genes. Science. 1985 Mar 29;227(4694):1597–1601. doi: 10.1126/science.3975629. [DOI] [PubMed] [Google Scholar]
- Pratt L. F., Rassenti L., Larrick J., Robbins B., Banks P. M., Kipps T. J. Ig V region gene expression in small lymphocytic lymphoma with little or no somatic hypermutation. J Immunol. 1989 Jul 15;143(2):699–705. [PubMed] [Google Scholar]
- Raaphorst F. M., Raman C. S., Tami J., Fischbach M., Sanz I. Human Ig heavy chain CDR3 regions in adult bone marrow pre-B cells display an adult phenotype of diversity: evidence for structural selection of DH amino acid sequences. Int Immunol. 1997 Oct;9(10):1503–1515. doi: 10.1093/intimm/9.10.1503. [DOI] [PubMed] [Google Scholar]
- Rassenti L. Z., Kipps T. J. Lack of allelic exclusion in B cell chronic lymphocytic leukemia. J Exp Med. 1997 Apr 21;185(8):1435–1445. doi: 10.1084/jem.185.8.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rassenti L. Z., Kohsaka H., Kipps T. J. Analysis of immunoglobulin VH gene repertoire by an anchored PCR-ELISA. Ann N Y Acad Sci. 1995 Sep 29;764:463–473. doi: 10.1111/j.1749-6632.1995.tb55866.x. [DOI] [PubMed] [Google Scholar]
- Rettig M. B., Vescio R. A., Cao J., Wu C. H., Lee J. C., Han E., DerDanielian M., Newman R., Hong C., Lichtenstein A. K. VH gene usage is multiple myeloma: complete absence of the VH4.21 (VH4-34) gene. Blood. 1996 Apr 1;87(7):2846–2852. [PubMed] [Google Scholar]
- Rudikoff S., Giusti A. M., Cook W. D., Scharff M. D. Single amino acid substitution altering antigen-binding specificity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1979–1983. doi: 10.1073/pnas.79.6.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasso E. H., Johnson T., Kipps T. J. Expression of the immunoglobulin VH gene 51p1 is proportional to its germline gene copy number. J Clin Invest. 1996 May 1;97(9):2074–2080. doi: 10.1172/JCI118644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder H. W., Jr, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol Today. 1994 Jun;15(6):288–294. doi: 10.1016/0167-5699(94)90009-4. [DOI] [PubMed] [Google Scholar]
- Schroeder H. W., Jr, Hillson J. L., Perlmutter R. M. Early restriction of the human antibody repertoire. Science. 1987 Nov 6;238(4828):791–793. doi: 10.1126/science.3118465. [DOI] [PubMed] [Google Scholar]
- Shen A., Humphries C., Tucker P., Blattner F. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8563–8567. doi: 10.1073/pnas.84.23.8563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin E. K., Matsuda F., Nagaoka H., Fukita Y., Imai T., Yokoyama K., Soeda E., Honjo T. Physical map of the 3' region of the human immunoglobulin heavy chain locus: clustering of autoantibody-related variable segments in one haplotype. EMBO J. 1991 Dec;10(12):3641–3645. doi: 10.1002/j.1460-2075.1991.tb04930.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
- Silberstein L. E., Jefferies L. C., Goldman J., Friedman D., Moore J. S., Nowell P. C., Roelcke D., Pruzanski W., Roudier J., Silverman G. J. Variable region gene analysis of pathologic human autoantibodies to the related i and I red blood cell antigens. Blood. 1991 Nov 1;78(9):2372–2386. [PubMed] [Google Scholar]
- Silverman G. J., Pirès R., Bouvet J. P. An endogenous sialoprotein and a bacterial B cell superantigen compete in their VH family-specific binding interactions with human Igs. J Immunol. 1996 Nov 15;157(10):4496–4502. [PubMed] [Google Scholar]
- Spatz L. A., Wong K. K., Williams M., Desai R., Golier J., Berman J. E., Alt F. W., Latov N. Cloning and sequence analysis of the VH and VL regions of an anti-myelin/DNA antibody from a patient with peripheral neuropathy and chronic lymphocytic leukemia. J Immunol. 1990 Apr 1;144(7):2821–2828. [PubMed] [Google Scholar]
- Stevenson F. K., Spellerberg M. B., Chapman C. J., Hamblin T. J. Differential usage of an autoantibody-associated VH gene, VH4-21, by human B-cell tumors. Leuk Lymphoma. 1995 Feb;16(5-6):379–384. doi: 10.3109/10428199509054423. [DOI] [PubMed] [Google Scholar]
- Stevenson F. K., Spellerberg M. B., Treasure J., Chapman C. J., Silberstein L. E., Hamblin T. J., Jones D. B. Differential usage of an Ig heavy chain variable region gene by human B-cell tumors. Blood. 1993 Jul 1;82(1):224–230. [PubMed] [Google Scholar]
- Stewart A. K., Huang C., Stollar B. D., Schwartz R. S. High-frequency representation of a single VH gene in the expressed human B cell repertoire. J Exp Med. 1993 Feb 1;177(2):409–418. doi: 10.1084/jem.177.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I., Pfister L., Glas A., Nottenburg C., Milner E. C. Representation of rearranged VH gene segments in the human adult antibody repertoire. J Immunol. 1995 Apr 15;154(8):3902–3911. [PubMed] [Google Scholar]
- Wagner S. D., Luzzatto L. V kappa gene segments rearranged in chronic lymphocytic leukemia are distributed over a large portion of the V kappa locus and do not show somatic mutation. Eur J Immunol. 1993 Feb;23(2):391–397. doi: 10.1002/eji.1830230214. [DOI] [PubMed] [Google Scholar]
- Yancopoulos G. D., Desiderio S. V., Paskind M., Kearney J. F., Baltimore D., Alt F. W. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature. 1984 Oct 25;311(5988):727–733. doi: 10.1038/311727a0. [DOI] [PubMed] [Google Scholar]