Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Oct 15;102(8):1634–1640. doi: 10.1172/JCI3971

Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism.

P M Barker 1, M S Nguyen 1, J T Gatzy 1, B Grubb 1, H Norman 1, E Hummler 1, B Rossier 1, R C Boucher 1, B Koller 1
PMCID: PMC509015  PMID: 9788978

Abstract

Genetic evidence supports a critical role for the epithelial sodium channel (ENaC) in both clearance of fetal lung liquid at birth and total body electrolyte homeostasis. Evidence from heterologous expression systems suggests that expression of the alphaENaC subunit is essential for channel function, whereas residual channel function can be measured in the absence of beta or gamma subunits. We generated mice without gammaENaC (gammaENaC -/-) to test the role of this subunit in neonatal lung liquid clearance and total body electrolyte balance. Relative to controls, gammaENaC (-/-) pups showed low urinary [K+] and high urinary [Na+] and died between 24 and 36 h, probably from hyperkalemia (gammaENaC -/- 18.3 mEq/l, control littermates 9.7 mEq/l). Newborn gammaENaC (-/-) mice cleared lung liquid more slowly than control littermates, but lung water at 12 h (wet/dry = 5.5) was nearly normal (wet/dry = 5.3). This study suggests that gammaENaC facilitates neonatal lung liquid clearance and is critical for renal Na+ and K+ transport, and that low level Na+ transport may be sufficient for perinatal lung liquid absorption but insufficient to maintain electrolyte balance by the distal nephron. The gammaENaC (-/-) newborn exhibits a phenotype that resembles the clinical manifestations of human neonatal PHA1.

Full Text

The Full Text of this article is available as a PDF (223.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amtorp O., Sorensen S. C. The ontogenetic development of concentration differences for protein and ions between plasma and cerebrospinal fluid in rabbits and rats. J Physiol. 1974 Dec;243(2):387–400. doi: 10.1113/jphysiol.1974.sp010759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker P. M., Gatzy J. T. Effect of gas composition on liquid secretion by explants of distal lung of fetal rat in submersion culture. Am J Physiol. 1993 Nov;265(5 Pt 1):L512–L517. doi: 10.1152/ajplung.1993.265.5.L512. [DOI] [PubMed] [Google Scholar]
  3. Barker P. M., Gowen C. W., Lawson E. E., Knowles M. R. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J Pediatr. 1997 Mar;130(3):373–377. doi: 10.1016/s0022-3476(97)70198-7. [DOI] [PubMed] [Google Scholar]
  4. Burch L. H., Talbot C. R., Knowles M. R., Canessa C. M., Rossier B. C., Boucher R. C. Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am J Physiol. 1995 Aug;269(2 Pt 1):C511–C518. doi: 10.1152/ajpcell.1995.269.2.C511. [DOI] [PubMed] [Google Scholar]
  5. Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
  6. Chang S. S., Grunder S., Hanukoglu A., Rösler A., Mathew P. M., Hanukoglu I., Schild L., Lu Y., Shimkets R. A., Nelson-Williams C. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996 Mar;12(3):248–253. doi: 10.1038/ng0396-248. [DOI] [PubMed] [Google Scholar]
  7. Ciampolillo F., McCoy D. E., Green R. B., Karlson K. H., Dagenais A., Molday R. S., Stanton B. A. Cell-specific expression of amiloride-sensitive, Na(+)-conducting ion channels in the kidney. Am J Physiol. 1996 Oct;271(4 Pt 1):C1303–C1315. doi: 10.1152/ajpcell.1996.271.4.C1303. [DOI] [PubMed] [Google Scholar]
  8. Duc C., Farman N., Canessa C. M., Bonvalet J. P., Rossier B. C. Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol. 1994 Dec;127(6 Pt 2):1907–1921. doi: 10.1083/jcb.127.6.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farman N., Talbot C. R., Boucher R., Fay M., Canessa C., Rossier B., Bonvalet J. P. Noncoordinated expression of alpha-, beta-, and gamma-subunit mRNAs of epithelial Na+ channel along rat respiratory tract. Am J Physiol. 1997 Jan;272(1 Pt 1):C131–C141. doi: 10.1152/ajpcell.1997.272.1.C131. [DOI] [PubMed] [Google Scholar]
  10. Firsov D., Gautschi I., Merillat A. M., Rossier B. C., Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 1998 Jan 15;17(2):344–352. doi: 10.1093/emboj/17.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Firsov D., Schild L., Gautschi I., Mérillat A. M., Schneeberger E., Rossier B. C. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15370–15375. doi: 10.1073/pnas.93.26.15370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forrester R. L., Wataji L. J., Silverman D. A., Pierre K. J. Enzymatic method for determination of CO2 in serum. Clin Chem. 1976 Feb;22(2):243–245. [PubMed] [Google Scholar]
  13. Grubb B. R., Vick R. N., Boucher R. C. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice. Am J Physiol. 1994 May;266(5 Pt 1):C1478–C1483. doi: 10.1152/ajpcell.1994.266.5.C1478. [DOI] [PubMed] [Google Scholar]
  14. Hansson J. H., Nelson-Williams C., Suzuki H., Schild L., Shimkets R., Lu Y., Canessa C., Iwasaki T., Rossier B., Lifton R. P. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995 Sep;11(1):76–82. doi: 10.1038/ng0995-76. [DOI] [PubMed] [Google Scholar]
  15. Hummler E., Barker P., Gatzy J., Beermann F., Verdumo C., Schmidt A., Boucher R., Rossier B. C. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996 Mar;12(3):325–328. doi: 10.1038/ng0396-325. [DOI] [PubMed] [Google Scholar]
  16. Hummler E., Barker P., Talbot C., Wang Q., Verdumo C., Grubb B., Gatzy J., Burnier M., Horisberger J. D., Beermann F. A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11710–11715. doi: 10.1073/pnas.94.21.11710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krochmal-Mokrzan E. M., Barker P. M., Gatzy J. T. Effects of hormones on potential difference and liquid balance across explants from proximal and distal fetal rat lung. J Physiol. 1993 Apr;463:647–665. doi: 10.1113/jphysiol.1993.sp019615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsushita K., McCray P. B., Jr, Sigmund R. D., Welsh M. J., Stokes J. B. Localization of epithelial sodium channel subunit mRNAs in adult rat lung by in situ hybridization. Am J Physiol. 1996 Aug;271(2 Pt 1):L332–L339. doi: 10.1152/ajplung.1996.271.2.L332. [DOI] [PubMed] [Google Scholar]
  19. McDonald F. J., Price M. P., Snyder P. M., Welsh M. J. Cloning and expression of the beta- and gamma-subunits of the human epithelial sodium channel. Am J Physiol. 1995 May;268(5 Pt 1):C1157–C1163. doi: 10.1152/ajpcell.1995.268.5.C1157. [DOI] [PubMed] [Google Scholar]
  20. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Brodovich H., Hannam V., Seear M., Mullen J. B. Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985) 1990 Apr;68(4):1758–1762. doi: 10.1152/jappl.1990.68.4.1758. [DOI] [PubMed] [Google Scholar]
  22. Olver R. E., Ramsden C. A., Strang L. B., Walters D. V. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol. 1986 Jul;376:321–340. doi: 10.1113/jphysiol.1986.sp016156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Renard S., Voilley N., Bassilana F., Lazdunski M., Barbry P. Localization and regulation by steroids of the alpha, beta and gamma subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pflugers Arch. 1995 Jul;430(3):299–307. doi: 10.1007/BF00373903. [DOI] [PubMed] [Google Scholar]
  24. Shimkets R. A., Warnock D. G., Bositis C. M., Nelson-Williams C., Hansson J. H., Schambelan M., Gill J. R., Jr, Ulick S., Milora R. V., Findling J. W. Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994 Nov 4;79(3):407–414. doi: 10.1016/0092-8674(94)90250-x. [DOI] [PubMed] [Google Scholar]
  25. Strautnieks S. S., Thompson R. J., Gardiner R. M., Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet. 1996 Jun;13(2):248–250. doi: 10.1038/ng0696-248. [DOI] [PubMed] [Google Scholar]
  26. Tchepichev S., Ueda J., Canessa C., Rossier B. C., O'Brodovich H. Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol. 1995 Sep;269(3 Pt 1):C805–C812. doi: 10.1152/ajpcell.1995.269.3.C805. [DOI] [PubMed] [Google Scholar]
  27. Voilley N., Lingueglia E., Champigny G., Mattéi M. G., Waldmann R., Lazdunski M., Barbry P. The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):247–251. doi: 10.1073/pnas.91.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wolford S. T., Schroer R. A., Gohs F. X., Gallo P. P., Brodeck M., Falk H. B., Ruhren R. Reference range data base for serum chemistry and hematology values in laboratory animals. J Toxicol Environ Health. 1986;18(2):161–188. doi: 10.1080/15287398609530859. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES