Abstract
In Liddle's syndrome, a rare inherited form of hypertension, epithelial sodium channel mutations appear to cause high blood pressure by increasing sodium reabsorption through sodium channels in the renal distal tubule. This increase in channel activity has not been confirmed previously by in vivo measurement. We have made transnasal potential difference measurements (effective in detection of increased sodium channel activity in cystic fibrosis) in three brothers with genetically proven Liddle's syndrome, their unaffected sister, and 40 normotensive controls. Maximum potential difference after 2 wk off treatment in the affected brothers was -30.4+/-1.2 mV (values mean+/-SD, lumen-negative with respect to submucosa) and was significantly more lumen-negative than that of the control group (-18.6+/-6.8 mV, P = 0.0228) or the unaffected sister (-18.25 mV, P < 0.01). The change in potential difference after topical application of 10(-)4 M amiloride was greater in the Liddle's patients, 14.0+/-2.1 mV, than in controls (7.9+/-3.9 mV, P = 0.0126) or the unaffected sister (5.5 mV, P < 0.05). This is the first in vivo demonstration of increased sodium channel activity in Liddle's syndrome. If these results are confirmed in other kindreds with this condition, then nasal potential difference measurements could provide a simple clinical test for Liddle's syndrome.
Full Text
The Full Text of this article is available as a PDF (149.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alton E. W., Currie D., Logan-Sinclair R., Warner J. O., Hodson M. E., Geddes D. M. Nasal potential difference: a clinical diagnostic test for cystic fibrosis. Eur Respir J. 1990 Sep;3(8):922–926. [PubMed] [Google Scholar]
- Botero-Velez M., Curtis J. J., Warnock D. G. Brief report: Liddle's syndrome revisited--a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994 Jan 20;330(3):178–181. doi: 10.1056/NEJM199401203300305. [DOI] [PubMed] [Google Scholar]
- Bubien J. K., Ismailov I. I., Berdiev B. K., Cornwell T., Lifton R. P., Fuller C. M., Achard J. M., Benos D. J., Warnock D. G. Liddle's disease: abnormal regulation of amiloride-sensitive Na+ channels by beta-subunit mutation. Am J Physiol. 1996 Jan;270(1 Pt 1):C208–C213. doi: 10.1152/ajpcell.1996.270.1.C208. [DOI] [PubMed] [Google Scholar]
- Burch L. H., Talbot C. R., Knowles M. R., Canessa C. M., Rossier B. C., Boucher R. C. Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am J Physiol. 1995 Aug;269(2 Pt 1):C511–C518. doi: 10.1152/ajpcell.1995.269.2.C511. [DOI] [PubMed] [Google Scholar]
- Chinet T. C., Fullton J. M., Yankaskas J. R., Boucher R. C., Stutts M. J. Sodium-permeable channels in the apical membrane of human nasal epithelial cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C1050–C1060. doi: 10.1152/ajpcell.1993.265.4.C1050. [DOI] [PubMed] [Google Scholar]
- Crawford I., Maloney P. C., Zeitlin P. L., Guggino W. B., Hyde S. C., Turley H., Gatter K. C., Harris A., Higgins C. F. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9262–9266. doi: 10.1073/pnas.88.20.9262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton D. C., Becchetti A., Ma H., Ling B. N. Renal sodium channels: regulation and single channel properties. Kidney Int. 1995 Oct;48(4):941–949. doi: 10.1038/ki.1995.375. [DOI] [PubMed] [Google Scholar]
- Firsov D., Schild L., Gautschi I., Mérillat A. M., Schneeberger E., Rossier B. C. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15370–15375. doi: 10.1073/pnas.93.26.15370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gadallah M. F., Abreo K., Work J. Liddle's syndrome, an underrecognized entity: a report of four cases, including the first report in black individuals. Am J Kidney Dis. 1995 Jun;25(6):829–835. doi: 10.1016/0272-6386(95)90564-2. [DOI] [PubMed] [Google Scholar]
- Ghosal S., Taylor C. J., McGaw J. Modification of nasal membrane potential difference with inhaled amiloride and loperamide in the cystic fibrosis (CF) mouse. Thorax. 1996 Dec;51(12):1229–1232. doi: 10.1136/thx.51.12.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansson J. H., Nelson-Williams C., Suzuki H., Schild L., Shimkets R., Lu Y., Canessa C., Iwasaki T., Rossier B., Lifton R. P. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995 Sep;11(1):76–82. doi: 10.1038/ng0995-76. [DOI] [PubMed] [Google Scholar]
- Jeunemaitre X., Bassilana F., Persu A., Dumont C., Champigny G., Lazdunski M., Corvol P., Barbry P. Genotype-phenotype analysis of a newly discovered family with Liddle's syndrome. J Hypertens. 1997 Oct;15(10):1091–1100. doi: 10.1097/00004872-199715100-00007. [DOI] [PubMed] [Google Scholar]
- Kent G., Oliver M., Foskett J. K., Frndova H., Durie P., Forstner J., Forstner G. G., Riordan J. R., Percy D., Buchwald M. Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res. 1996 Aug;40(2):233–241. doi: 10.1203/00006450-199608000-00008. [DOI] [PubMed] [Google Scholar]
- Knowles M. R., Carson J. L., Collier A. M., Gatzy J. T., Boucher R. C. Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am Rev Respir Dis. 1981 Oct;124(4):484–490. doi: 10.1164/arrd.1981.124.4.484. [DOI] [PubMed] [Google Scholar]
- McDonald F. J., Price M. P., Snyder P. M., Welsh M. J. Cloning and expression of the beta- and gamma-subunits of the human epithelial sodium channel. Am J Physiol. 1995 May;268(5 Pt 1):C1157–C1163. doi: 10.1152/ajpcell.1995.268.5.C1157. [DOI] [PubMed] [Google Scholar]
- Morales M. M., Carroll T. P., Morita T., Schwiebert E. M., Devuyst O., Wilson P. D., Lopes A. G., Stanton B. A., Dietz H. C., Cutting G. R. Both the wild type and a functional isoform of CFTR are expressed in kidney. Am J Physiol. 1996 Jun;270(6 Pt 2):F1038–F1048. doi: 10.1152/ajprenal.1996.270.6.F1038. [DOI] [PubMed] [Google Scholar]
- Schild L., Canessa C. M., Shimkets R. A., Gautschi I., Lifton R. P., Rossier B. C. A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5699–5703. doi: 10.1073/pnas.92.12.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimkets R. A., Warnock D. G., Bositis C. M., Nelson-Williams C., Hansson J. H., Schambelan M., Gill J. R., Jr, Ulick S., Milora R. V., Findling J. W. Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994 Nov 4;79(3):407–414. doi: 10.1016/0092-8674(94)90250-x. [DOI] [PubMed] [Google Scholar]
- Snyder P. M., Price M. P., McDonald F. J., Adams C. M., Volk K. A., Zeiher B. G., Stokes J. B., Welsh M. J. Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell. 1995 Dec 15;83(6):969–978. doi: 10.1016/0092-8674(95)90212-0. [DOI] [PubMed] [Google Scholar]
- Stutts M. J., Canessa C. M., Olsen J. C., Hamrick M., Cohn J. A., Rossier B. C., Boucher R. C. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995 Aug 11;269(5225):847–850. doi: 10.1126/science.7543698. [DOI] [PubMed] [Google Scholar]