Abstract
Cystic fibrosis (CF) airway cells, besides their well-known defect in cAMP-dependent Cl- conductance, are characterized by an enhanced Na+ conductance. In this study we have examined the Na+ conductance in human respiratory tract by measuring transepithelial voltage and resistance (Vte, Rte) and by assessing membrane voltages (Vm) of freshly isolated airway epithelial cells from CF and non-CF patients. Basal amiloride inhibitable (10 micromol/liter) equivalent short circuit current (Isc = Vte/Rte) was significantly increased in CF compared with non-CF tissues. After stimulation by forskolin (10 micromol/liter) a significant depolarization of Vm corresponding to the cAMP-dependent activation of a Cl- conductance was observed in non-CF but not in CF airway cells. In non-CF tissue but not in CF tissue the effects of amiloride and N-methyl-D-glucamine on Vm were attenuated in the presence of forskolin. Also the amiloride-inhibitable Isc was significantly reduced by forskolin (1 micromol/liter) and isobutylmethylxanthine (IBMX; 100 micromol/liter) only in non-CF tissue. We conclude that cystic fibrosis transmembrane conductance regulator acts as a downregulator of epithelial Na+ channels in human airways. This downregulation of epithelial Na+ channels is absent in CF airways, leading to hyperabsorption and to the characteristic increase in mucus viscosity.
Full Text
The Full Text of this article is available as a PDF (363.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bleich M., Briel M., Busch A. E., Lang H. J., Gerlach U., Gögelein H., Greger R., Kunzelmann K. KVLQT channels are inhibited by the K+ channel blocker 293B. Pflugers Arch. 1997 Aug;434(4):499–501. doi: 10.1007/s004240050427. [DOI] [PubMed] [Google Scholar]
- Boucher R. C., Chinet T., Willumsen N., Knowles M. R., Stutts M. J. Ion transport in normal and CF airway epithelia. Adv Exp Med Biol. 1991;290:105–118. doi: 10.1007/978-1-4684-5934-0_13. [DOI] [PubMed] [Google Scholar]
- Boucher R. C., Cotton C. U., Gatzy J. T., Knowles M. R., Yankaskas J. R. Evidence for reduced Cl- and increased Na+ permeability in cystic fibrosis human primary cell cultures. J Physiol. 1988 Nov;405:77–103. doi: 10.1113/jphysiol.1988.sp017322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boucher R. C., Stutts M. J., Knowles M. R., Cantley L., Gatzy J. T. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986 Nov;78(5):1245–1252. doi: 10.1172/JCI112708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canessa C. M., Horisberger J. D., Rossier B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467–470. doi: 10.1038/361467a0. [DOI] [PubMed] [Google Scholar]
- Ecke D., Bleich M., Greger R. The amiloride inhibitable Na+ conductance of rat colonic crypt cells is suppressed by forskolin. Pflugers Arch. 1996 Apr;431(6):984–986. doi: 10.1007/s004240050095. [DOI] [PubMed] [Google Scholar]
- Engelhardt J. F., Yankaskas J. R., Ernst S. A., Yang Y., Marino C. R., Boucher R. C., Cohn J. A., Wilson J. M. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992 Nov;2(3):240–248. doi: 10.1038/ng1192-240. [DOI] [PubMed] [Google Scholar]
- Finkbeiner W. E., Shen B. Q., Widdicombe J. H. Chloride secretion and function of serous and mucous cells of human airway glands. Am J Physiol. 1994 Aug;267(2 Pt 1):L206–L210. doi: 10.1152/ajplung.1994.267.2.L206. [DOI] [PubMed] [Google Scholar]
- Fuller C. M., Benos D. J. CFTR! Am J Physiol. 1992 Aug;263(2 Pt 1):C267–C286. doi: 10.1152/ajpcell.1992.263.2.C267. [DOI] [PubMed] [Google Scholar]
- Greger R., Mall M., Bleich M., Ecke D., Warth R., Riedemann N., Kunzelmann K. Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. J Mol Med (Berl) 1996 Sep;74(9):527–534. doi: 10.1007/BF00204979. [DOI] [PubMed] [Google Scholar]
- Ismailov I. I., Awayda M. S., Jovov B., Berdiev B. K., Fuller C. M., Dedman J. R., Kaetzel M., Benos D. J. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1996 Mar 1;271(9):4725–4732. doi: 10.1074/jbc.271.9.4725. [DOI] [PubMed] [Google Scholar]
- Johnson L. G., Dickman K. G., Moore K. L., Mandel L. J., Boucher R. C. Enhanced Na+ transport in an air-liquid interface culture system. Am J Physiol. 1993 Jun;264(6 Pt 1):L560–L565. doi: 10.1152/ajplung.1993.264.6.L560. [DOI] [PubMed] [Google Scholar]
- Kunzelmann K., Kathöfer S., Greger R. Na+ and Cl- conductances in airway epithelial cells: increased Na+ conductance in cystic fibrosis. Pflugers Arch. 1995 Nov;431(1):1–9. doi: 10.1007/BF00374371. [DOI] [PubMed] [Google Scholar]
- Kunzelmann K., Kathöfer S., Hipper A., Gruenert D. C., Gregner R. Culture-dependent expression of Na+ conductances in airway epithelial cells. Pflugers Arch. 1996 Feb;431(4):578–586. doi: 10.1007/BF02191906. [DOI] [PubMed] [Google Scholar]
- Kunzelmann K., Kiser G. L., Schreiber R., Riordan J. R. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett. 1997 Jan 6;400(3):341–344. doi: 10.1016/s0014-5793(96)01414-7. [DOI] [PubMed] [Google Scholar]
- Letz B., Korbmacher C. cAMP stimulates CFTR-like Cl- channels and inhibits amiloride-sensitive Na+ channels in mouse CCD cells. Am J Physiol. 1997 Feb;272(2 Pt 1):C657–C666. doi: 10.1152/ajpcell.1997.272.2.C657. [DOI] [PubMed] [Google Scholar]
- Mall M., Hipper A., Greger R., Kunzelmann K. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes. FEBS Lett. 1996 Feb 26;381(1-2):47–52. doi: 10.1016/0014-5793(96)00079-8. [DOI] [PubMed] [Google Scholar]
- Quinton P. M., Reddy M. M. Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature. 1992 Nov 5;360(6399):79–81. doi: 10.1038/360079a0. [DOI] [PubMed] [Google Scholar]
- Riordan J. R., Chang X. B. CFTR, a channel with the structure of a transporter. Biochim Biophys Acta. 1992 Jul 17;1101(2):221–222. [PubMed] [Google Scholar]
- Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
- Schreiber R., Greger R., Nitschke R., Kunzelmann K. Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes. Pflugers Arch. 1997 Nov;434(6):841–847. doi: 10.1007/s004240050473. [DOI] [PubMed] [Google Scholar]
- Stutts M. J., Canessa C. M., Olsen J. C., Hamrick M., Cohn J. A., Rossier B. C., Boucher R. C. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995 Aug 11;269(5225):847–850. doi: 10.1126/science.7543698. [DOI] [PubMed] [Google Scholar]
- Stutts M. J., Rossier B. C., Boucher R. C. Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J Biol Chem. 1997 May 30;272(22):14037–14040. doi: 10.1074/jbc.272.22.14037. [DOI] [PubMed] [Google Scholar]