Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 1;102(1):22–33. doi: 10.1172/JCI2698

Role of Endothelin-1/Endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice.

H Yanagisawa 1, R E Hammer 1, J A Richardson 1, S C Williams 1, D E Clouthier 1, M Yanagisawa 1
PMCID: PMC509061  PMID: 9649553

Abstract

The intercellular signaling mediated by endothelins and their G protein-coupled receptors has recently been shown to be essential for the normal embryonic development of subsets of neural crest cell derivatives. Endothelin-1 (ET-1) is proteolytically generated from its inactive precursor by endothelin-converting enzyme-1 (ECE-1) and acts on the endothelin-A (ETA) receptor. Genetic disruption of this ET-1/ECE-1/ETA pathway results in defects in branchial arch- derived craniofacial tissues, as well as defects in cardiac outflow and great vessel structures, which are derived from cephalic (cardiac) neural crest. In this study, in situ hybridization of ETA-/- and ECE-1(-)/- embryos with a cardiac neural crest marker, cellular retinoic acid-binding protein-1, shows that the migration of neural crest cells from the neural tube to cardiac outflow tract is not affected in these embryos. Immunostaining of an endothelial marker, platelet endothelial cell adhesion molecule CD-31, shows that the initial formation of the branchial arch arteries is not disturbed in ETA-/- or ECE-1(-)/- embryos. To visualize the subsequent patterning of arch vessels in detail, we generated ETA-/- or ECE-1(-)/- embryos that expressed an SM22alpha-lacZ marker transgene in arterial smooth muscle cells. Wholemount X-gal staining of these mutant embryos reveals that the abnormal regression and persistence of specific arch arteries results in disturbance of asymmetrical remodeling of the arch arteries. These defects include abnormal regression of arch arteries 4 and 6, enlargement of arch artery 3, and abnormal persistence of the bilateral ductus caroticus and right dorsal aorta. These abnormalities eventually lead to various types of great vessel malformations highly similar to those seen in neural crest-ablated chick embryos and human congenital cardiac defects. This study demonstrates that ET-1/ETA-mediated signaling plays an essential role in a complex process of aortic arch patterning by affecting the postmigratory cardiac neural crest cell development.

Full Text

The Full Text of this article is available as a PDF (631.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990 Dec 20;348(6303):730–732. doi: 10.1038/348730a0. [DOI] [PubMed] [Google Scholar]
  2. Baker S. S., Rugh C. L., Kamalay J. C. RNA and DNA isolation from recalcitrant plant tissues. Biotechniques. 1990 Sep;9(3):268–272. [PubMed] [Google Scholar]
  3. Baynash A. G., Hosoda K., Giaid A., Richardson J. A., Emoto N., Hammer R. E., Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994 Dec 30;79(7):1277–1285. doi: 10.1016/0092-8674(94)90018-3. [DOI] [PubMed] [Google Scholar]
  4. Benjamin I. J., Shelton J., Garry D. J., Richardson J. A. Temporospatial expression of the small HSP/alpha B-crystallin in cardiac and skeletal muscle during mouse development. Dev Dyn. 1997 Jan;208(1):75–84. doi: 10.1002/(SICI)1097-0177(199701)208:1<75::AID-AJA7>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  5. Bockman D. E., Redmond M. E., Kirby M. L. Alteration of early vascular development after ablation of cranial neural crest. Anat Rec. 1989 Nov;225(3):209–217. doi: 10.1002/ar.1092250306. [DOI] [PubMed] [Google Scholar]
  6. Bockman D. E., Redmond M. E., Waldo K., Davis H., Kirby M. L. Effect of neural crest ablation on development of the heart and arch arteries in the chick. Am J Anat. 1987 Dec;180(4):332–341. doi: 10.1002/aja.1001800403. [DOI] [PubMed] [Google Scholar]
  7. Brannan C. I., Perkins A. S., Vogel K. S., Ratner N., Nordlund M. L., Reid S. W., Buchberg A. M., Jenkins N. A., Parada L. F., Copeland N. G. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994 May 1;8(9):1019–1029. doi: 10.1101/gad.8.9.1019. [DOI] [PubMed] [Google Scholar]
  8. Cameron A. H., Acerete F., Quero M., Castro M. C. Double outlet right ventricle. Study of 27 cases. Br Heart J. 1976 Nov;38(11):1124–1132. doi: 10.1136/hrt.38.11.1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chisaka O., Capecchi M. R. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature. 1991 Apr 11;350(6318):473–479. doi: 10.1038/350473a0. [DOI] [PubMed] [Google Scholar]
  10. Clouthier D. E., Hosoda K., Richardson J. A., Williams S. C., Yanagisawa H., Kuwaki T., Kumada M., Hammer R. E., Yanagisawa M. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development. 1998 Mar;125(5):813–824. doi: 10.1242/dev.125.5.813. [DOI] [PubMed] [Google Scholar]
  11. Conway S. J., Henderson D. J., Copp A. J. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development. 1997 Jan;124(2):505–514. doi: 10.1242/dev.124.2.505. [DOI] [PubMed] [Google Scholar]
  12. Crupi G., Macartney F. J., Anderson R. H. Persistent truncus arteriosus. A study of 66 autopsy cases with special reference to definition and morphogenesis. Am J Cardiol. 1977 Oct;40(4):569–578. doi: 10.1016/0002-9149(77)90073-x. [DOI] [PubMed] [Google Scholar]
  13. Donovan M. J., Hahn R., Tessarollo L., Hempstead B. L. Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat Genet. 1996 Oct;14(2):210–213. doi: 10.1038/ng1096-210. [DOI] [PubMed] [Google Scholar]
  14. Gendron-Maguire M., Mallo M., Zhang M., Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993 Dec 31;75(7):1317–1331. doi: 10.1016/0092-8674(93)90619-2. [DOI] [PubMed] [Google Scholar]
  15. Giguère V., Lyn S., Yip P., Siu C. H., Amin S. Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6233–6237. doi: 10.1073/pnas.87.16.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gruber P. J., Kubalak S. W., Pexieder T., Sucov H. M., Evans R. M., Chien K. R. RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J Clin Invest. 1996 Sep 15;98(6):1332–1343. doi: 10.1172/JCI118920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hanley T., Merlie J. P. Transgene detection in unpurified mouse tail DNA by polymerase chain reaction. Biotechniques. 1991 Jan;10(1):56–56. [PubMed] [Google Scholar]
  18. Hogers B., DeRuiter M. C., Baasten A. M., Gittenberger-de Groot A. C., Poelmann R. E. Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circ Res. 1995 May;76(5):871–877. doi: 10.1161/01.res.76.5.871. [DOI] [PubMed] [Google Scholar]
  19. Hogers B., DeRuiter M. C., Gittenberger-de Groot A. C., Poelmann R. E. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997 Apr;80(4):473–481. doi: 10.1161/01.res.80.4.473. [DOI] [PubMed] [Google Scholar]
  20. Hosoda K., Hammer R. E., Richardson J. A., Baynash A. G., Cheung J. C., Giaid A., Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7):1267–1276. doi: 10.1016/0092-8674(94)90017-5. [DOI] [PubMed] [Google Scholar]
  21. Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2863–2867. doi: 10.1073/pnas.86.8.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirby M. L., Gale T. F., Stewart D. E. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983 Jun 3;220(4601):1059–1061. doi: 10.1126/science.6844926. [DOI] [PubMed] [Google Scholar]
  23. Kirby M. L., Waldo K. L. Neural crest and cardiovascular patterning. Circ Res. 1995 Aug;77(2):211–215. doi: 10.1161/01.res.77.2.211. [DOI] [PubMed] [Google Scholar]
  24. Kuratani S. C., Kirby M. L. Initial migration and distribution of the cardiac neural crest in the avian embryo: an introduction to the concept of the circumpharyngeal crest. Am J Anat. 1991 Jul;191(3):215–227. doi: 10.1002/aja.1001910302. [DOI] [PubMed] [Google Scholar]
  25. Kurihara Y., Kurihara H., Oda H., Maemura K., Nagai R., Ishikawa T., Yazaki Y. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest. 1995 Jul;96(1):293–300. doi: 10.1172/JCI118033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kurihara Y., Kurihara H., Suzuki H., Kodama T., Maemura K., Nagai R., Oda H., Kuwaki T., Cao W. H., Kamada N. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature. 1994 Apr 21;368(6473):703–710. doi: 10.1038/368703a0. [DOI] [PubMed] [Google Scholar]
  27. Le Lièvre C. S., Le Douarin N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol. 1975 Aug;34(1):125–154. [PubMed] [Google Scholar]
  28. Li L., Miano J. M., Cserjesi P., Olson E. N. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res. 1996 Feb;78(2):188–195. doi: 10.1161/01.res.78.2.188. [DOI] [PubMed] [Google Scholar]
  29. Li L., Miano J. M., Mercer B., Olson E. N. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol. 1996 Mar;132(5):849–859. doi: 10.1083/jcb.132.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mendelsohn C., Lohnes D., Décimo D., Lufkin T., LeMeur M., Chambon P., Mark M. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994 Oct;120(10):2749–2771. doi: 10.1242/dev.120.10.2749. [DOI] [PubMed] [Google Scholar]
  31. Nishibatake M., Kirby M. L., Van Mierop L. H. Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation. 1987 Jan;75(1):255–264. doi: 10.1161/01.cir.75.1.255. [DOI] [PubMed] [Google Scholar]
  32. Oh S. P., Li E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev. 1997 Jul 15;11(14):1812–1826. doi: 10.1101/gad.11.14.1812. [DOI] [PubMed] [Google Scholar]
  33. Rijli F. M., Mark M., Lakkaraju S., Dierich A., Dollé P., Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993 Dec 31;75(7):1333–1349. doi: 10.1016/0092-8674(93)90620-6. [DOI] [PubMed] [Google Scholar]
  34. Sanford L. P., Ormsby I., Gittenberger-de Groot A. C., Sariola H., Friedman R., Boivin G. P., Cardell E. L., Doetschman T. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997 Jul;124(13):2659–2670. doi: 10.1242/dev.124.13.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Serbedzija G. N., McMahon A. P. Analysis of neural crest cell migration in Splotch mice using a neural crest-specific LacZ reporter. Dev Biol. 1997 May 15;185(2):139–147. doi: 10.1006/dbio.1997.8551. [DOI] [PubMed] [Google Scholar]
  36. Srivastava D., Thomas T., Lin Q., Kirby M. L., Brown D., Olson E. N. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet. 1997 Jun;16(2):154–160. doi: 10.1038/ng0697-154. [DOI] [PubMed] [Google Scholar]
  37. Van Mierop L. H., Kutsche L. M. Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol. 1986 Jul 1;58(1):133–137. doi: 10.1016/0002-9149(86)90256-0. [DOI] [PubMed] [Google Scholar]
  38. Van Mierop L. H., Kutsche L. M. Interruption of the aortic arch and coarctation of the aorta: pathogenetic relations. Am J Cardiol. 1984 Oct 1;54(7):829–834. doi: 10.1016/s0002-9149(84)80215-5. [DOI] [PubMed] [Google Scholar]
  39. Vecchi A., Garlanda C., Lampugnani M. G., Resnati M., Matteucci C., Stoppacciaro A., Schnurch H., Risau W., Ruco L., Mantovani A. Monoclonal antibodies specific for endothelial cells of mouse blood vessels. Their application in the identification of adult and embryonic endothelium. Eur J Cell Biol. 1994 Apr;63(2):247–254. [PubMed] [Google Scholar]
  40. Waldo K. L., Kumiski D., Kirby M. L. Cardiac neural crest is essential for the persistence rather than the formation of an arch artery. Dev Dyn. 1996 Mar;205(3):281–292. doi: 10.1002/(SICI)1097-0177(199603)205:3<281::AID-AJA8>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  41. Wilson D. I., Burn J., Scambler P., Goodship J. DiGeorge syndrome: part of CATCH 22. J Med Genet. 1993 Oct;30(10):852–856. doi: 10.1136/jmg.30.10.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Xu D., Emoto N., Giaid A., Slaughter C., Kaw S., deWit D., Yanagisawa M. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell. 1994 Aug 12;78(3):473–485. doi: 10.1016/0092-8674(94)90425-1. [DOI] [PubMed] [Google Scholar]
  43. Yanagisawa H., Yanagisawa M., Kapur R. P., Richardson J. A., Williams S. C., Clouthier D. E., de Wit D., Emoto N., Hammer R. E. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998 Mar;125(5):825–836. doi: 10.1242/dev.125.5.825. [DOI] [PubMed] [Google Scholar]
  44. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  45. Yanagisawa M. The endothelin system. A new target for therapeutic intervention. Circulation. 1994 Mar;89(3):1320–1322. doi: 10.1161/01.cir.89.3.1320. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES