Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 1;102(1):88–97. doi: 10.1172/JCI2004

Immortalization of osteoclast precursors by targeting Bcl -XL and Simian virus 40 large T antigen to the osteoclast lineage in transgenic mice.

T A Hentunen 1, S V Reddy 1, B F Boyce 1, R Devlin 1, H R Park 1, H Chung 1, K S Selander 1, M Dallas 1, N Kurihara 1, D L Galson 1, S R Goldring 1, B A Koop 1, J J Windle 1, G D Roodman 1
PMCID: PMC509069  PMID: 9649561

Abstract

Cellular and molecular characterization of osteoclasts (OCL) has been extremely difficult since OCL are rare cells, and are difficult to isolate in large numbers. We used the tartrate-resistant acid phosphatase promoter to target the bcl-XL and/or Simian Virus 40 large T antigen (Tag) genes to cells in the OCL lineage in transgenic mice as a means of immortalizing OCL precursors. Immunocytochemical studies confirmed that we had targeted Bcl-XL and/or Tag to OCL, and transformed and mitotic OCL were readily apparent in bones from both Tag and bcl-XL/Tag mice. OCL formation in primary bone marrow cultures from bcl-XL, Tag, or bcl-XL/Tag mice was twofold greater compared with that of nontransgenic littermates. Bone marrow cells from bcl-XL/Tag mice, but not from singly transgenic bcl-XL or Tag mice, have survived in continuous culture for more than a year. These cells form high numbers of bone-resorbing OCL when cultured using standard conditions for inducing OCL formation, with approximately 50% of the mononuclear cells incorporated into OCL. The OCL that form express calcitonin receptors and contract in response to calcitonin. Studies examining the proliferative capacity and the resistance of OCL precursors from these transgenic mice to apoptosis demonstrated that the increased numbers of OCL precursors in marrow from bcl-XL/Tag mice was due to their increased survival rather than an increased proliferative capacity compared with Tag, bcl-XL, or normal mice. Histomorphometric studies of bones from bcl-XL/Tag mice also confirmed that there were increased numbers of OCL precursors (TRAP + mononuclear cells) present in vivo. These data demonstrate that by targeting both bcl-XL and Tag to cells in the OCL lineage, we have immortalized OCL precursors that form bone-resorbing OCL with an efficiency that is 300-500 times greater than that of normal marrow.

Full Text

The Full Text of this article is available as a PDF (707.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnett T. R., Dempster D. W. A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology. 1987 Feb;120(2):602–608. doi: 10.1210/endo-120-2-602. [DOI] [PubMed] [Google Scholar]
  2. Boise L. H., González-García M., Postema C. E., Ding L., Lindsten T., Turka L. A., Mao X., Nuñez G., Thompson C. B. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993 Aug 27;74(4):597–608. doi: 10.1016/0092-8674(93)90508-n. [DOI] [PubMed] [Google Scholar]
  3. Boise L. H., Minn A. J., Noel P. J., June C. H., Accavitti M. A., Lindsten T., Thompson C. B. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity. 1995 Jul;3(1):87–98. doi: 10.1016/1074-7613(95)90161-2. [DOI] [PubMed] [Google Scholar]
  4. Boyce B. F., Wright K., Reddy S. V., Koop B. A., Story B., Devlin R., Leach R. J., Roodman G. D., Windle J. J. Targeting simian virus 40 T antigen to the osteoclast in transgenic mice causes osteoclast tumors and transformation and apoptosis of osteoclasts. Endocrinology. 1995 Dec;136(12):5751–5759. doi: 10.1210/endo.136.12.7588333. [DOI] [PubMed] [Google Scholar]
  5. Chambers T. J., Owens J. M., Hattersley G., Jat P. S., Noble M. D. Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5578–5582. doi: 10.1073/pnas.90.12.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Efrat S., Fusco-DeMane D., Lemberg H., al Emran O., Wang X. Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3576–3580. doi: 10.1073/pnas.92.8.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fairbairn L. J., Cowling G. J., Reipert B. M., Dexter T. M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell. 1993 Sep 10;74(5):823–832. doi: 10.1016/0092-8674(93)90462-y. [DOI] [PubMed] [Google Scholar]
  10. Goldring S. R., Roelke M. S., Petrison K. K., Bhan A. K. Human giant cell tumors of bone identification and characterization of cell types. J Clin Invest. 1987 Feb;79(2):483–491. doi: 10.1172/JCI112838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grillot D. A., Merino R., Núez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med. 1995 Dec 1;182(6):1973–1983. doi: 10.1084/jem.182.6.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grillot D. A., Merino R., Pena J. C., Fanslow W. C., Finkelman F. D., Thompson C. B., Nunez G. bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J Exp Med. 1996 Feb 1;183(2):381–391. doi: 10.1084/jem.183.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hagenaars C. E., van der Kraan A. A., Kawilarang-de Haas E. W., Visser J. W., Nijweide P. J. Osteoclast formation from cloned pluripotent hemopoietic stem cells. Bone Miner. 1989 May;6(2):179–189. doi: 10.1016/0169-6009(89)90049-4. [DOI] [PubMed] [Google Scholar]
  14. Hattersley G., Chambers T. J. Generation of osteoclasts from hemopoietic cells and a multipotential cell line in vitro. J Cell Physiol. 1989 Sep;140(3):478–482. doi: 10.1002/jcp.1041400311. [DOI] [PubMed] [Google Scholar]
  15. Howes K. A., Ransom N., Papermaster D. S., Lasudry J. G., Albert D. M., Windle J. J. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev. 1994 Jun 1;8(11):1300–1310. doi: 10.1101/gad.8.11.1300. [DOI] [PubMed] [Google Scholar]
  16. Hughes D. E., Wright K. R., Uy H. L., Sasaki A., Yoneda T., Roodman G. D., Mundy G. R., Boyce B. F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995 Oct;10(10):1478–1487. doi: 10.1002/jbmr.5650101008. [DOI] [PubMed] [Google Scholar]
  17. Ikegame M., Rakopoulos M., Zhou H., Houssami S., Martin T. J., Moseley J. M., Findlay D. M. Calcitonin receptor isoforms in mouse and rat osteoclasts. J Bone Miner Res. 1995 Jan;10(1):59–65. doi: 10.1002/jbmr.5650100110. [DOI] [PubMed] [Google Scholar]
  18. Krajewski S., Krajewska M., Shabaik A., Wang H. G., Irie S., Fong L., Reed J. C. Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res. 1994 Nov 1;54(21):5501–5507. [PubMed] [Google Scholar]
  19. Li M., Hu J., Heermeier K., Hennighausen L., Furth P. A. Expression of a viral oncoprotein during mammary gland development alters cell fate and function: induction of p53-independent apoptosis is followed by impaired milk protein production in surviving cells. Cell Growth Differ. 1996 Jan;7(1):3–11. [PubMed] [Google Scholar]
  20. Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
  21. Mellon P. L., Windle J. J., Goldsmith P. C., Padula C. A., Roberts J. L., Weiner R. I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990 Jul;5(1):1–10. doi: 10.1016/0896-6273(90)90028-e. [DOI] [PubMed] [Google Scholar]
  22. Naik P., Karrim J., Hanahan D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 1996 Sep 1;10(17):2105–2116. doi: 10.1101/gad.10.17.2105. [DOI] [PubMed] [Google Scholar]
  23. Reddy S. V., Hundley J. E., Windle J. J., Alcantara O., Linn R., Leach R. J., Boldt D. H., Roodman G. D. Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter. J Bone Miner Res. 1995 Apr;10(4):601–606. doi: 10.1002/jbmr.5650100413. [DOI] [PubMed] [Google Scholar]
  24. Roodman G. D., Hutton J. J., Bollum F. J. DNA polymerase, thymidine kinase and DNA synthesis in erythropoietic mouse spleen cells separated on bovine serum albumin gradients. Biochim Biophys Acta. 1976 Apr 2;425(4):478–491. doi: 10.1016/0005-2787(76)90012-5. [DOI] [PubMed] [Google Scholar]
  25. Shibata M. A., Maroulakou I. G., Jorcyk C. L., Gold L. G., Ward J. M., Green J. E. p53-independent apoptosis during mammary tumor progression in C3(1)/SV40 large T antigen transgenic mice: suppression of apoptosis during the transition from preneoplasia to carcinoma. Cancer Res. 1996 Jul 1;56(13):2998–3003. [PubMed] [Google Scholar]
  26. Shin J. H., Kukita A., Ohki K., Katsuki T., Kohashi O. In vitro differentiation of the murine macrophage cell line BDM-1 into osteoclast-like cells. Endocrinology. 1995 Oct;136(10):4285–4292. doi: 10.1210/endo.136.10.7664646. [DOI] [PubMed] [Google Scholar]
  27. Takahashi N., Yamana H., Yoshiki S., Roodman G. D., Mundy G. R., Jones S. J., Boyde A., Suda T. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology. 1988 Apr;122(4):1373–1382. doi: 10.1210/endo-122-4-1373. [DOI] [PubMed] [Google Scholar]
  28. Udagawa N., Takahashi N., Akatsu T., Sasaki T., Yamaguchi A., Kodama H., Martin T. J., Suda T. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 1989 Oct;125(4):1805–1813. doi: 10.1210/endo-125-4-1805. [DOI] [PubMed] [Google Scholar]
  29. White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996 Jan 1;10(1):1–15. doi: 10.1101/gad.10.1.1. [DOI] [PubMed] [Google Scholar]
  30. Windle J. J., Weiner R. I., Mellon P. L. Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol. 1990 Apr;4(4):597–603. doi: 10.1210/mend-4-4-597. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES