Abstract
AA stimulates integrin-dependent neutrophil adhesion, a critical early step in acute inflammation. However, neither the signaling pathway(s) of AA-stimulated adhesion, nor whether AA acts directly or through the generation of active metabolites, has been elucidated. Previously, we have observed a tight association between neutrophil Erk activation and homotypic adhesion in response to chemoattractants acting through G protein-linked receptors. We now report a similar association between homotypic adhesion and Erk activation in response to AA. Erk activation was cyclooxygenase independent and required AA metabolism to 5(S)- hydroperoxyeicosatetraenoic acid (5-HpETE) via 5-lipoxygenase, but not the further lipoxygenase-dependent metabolism of 5-HpETE to leukotrienes. AA stimulation of Erk was accompanied by Raf-1 activation and was sensitive to inhibitors of Raf-1 and Mek. Whereas activation of Erk by AA was pertussis toxin sensitive, [3H]-AA binding to neutrophils was not saturable, suggesting that an AA metabolite activates a G protein. Consistent with this hypothesis, Erk activation by 5(S)-hydroxyeicosatetraenoic acid (5-HETE; lipoxygenase-independent metabolite of 5-HpETE) was also pertussis toxin sensitive. These data suggest that a 5-lipoxygenase metabolite of AA, e.g., 5-HETE, is released from AA-treated cells to engage a plasma membrane-associated, pertussis toxin-sensitive, G protein-linked receptor, leading to activation of Erk and adhesion via the Raf-1/Mek signal transduction pathway.
Full Text
The Full Text of this article is available as a PDF (331.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S. B., Cherksey B., Gude D., Leszczynska-Piziak J., Philips M. R., Blau L., Weissmann G. Nonsteroidal antiinflammatory drugs exert differential effects on neutrophil function and plasma membrane viscosity. Studies in human neutrophils and liposomes. Inflammation. 1990 Feb;14(1):11–30. doi: 10.1007/BF00914026. [DOI] [PubMed] [Google Scholar]
- Abramson S. B., Leszczynska-Piziak J., Weissmann G. Arachidonic acid as a second messenger. Interactions with a GTP-binding protein of human neutrophils. J Immunol. 1991 Jul 1;147(1):231–236. [PubMed] [Google Scholar]
- Aharoni I., Pick E. Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. J Leukoc Biol. 1990 Aug;48(2):107–115. doi: 10.1002/jlb.48.2.107. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
- Badwey J. A., Curnutte J. T., Robinson J. M., Berde C. B., Karnovsky M. J., Karnovsky M. L. Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem. 1984 Jun 25;259(12):7870–7877. [PubMed] [Google Scholar]
- Balch W. E., Rothman J. E. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys. 1985 Jul;240(1):413–425. doi: 10.1016/0003-9861(85)90046-3. [DOI] [PubMed] [Google Scholar]
- Bell R. L., Bouska J. B., Malo P. E., Lanni C., Harris R. R., Otis E. R., Stewart A. O., Brooks D. W., Carter G. W. Optimization of the potency and duration of action of N-hydroxyurea 5-lipoxygenase inhibitors. J Pharmacol Exp Ther. 1995 Feb;272(2):724–731. [PubMed] [Google Scholar]
- Boguski M. S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993 Dec 16;366(6456):643–654. doi: 10.1038/366643a0. [DOI] [PubMed] [Google Scholar]
- Bourne H. R. How receptors talk to trimeric G proteins. Curr Opin Cell Biol. 1997 Apr;9(2):134–142. doi: 10.1016/s0955-0674(97)80054-3. [DOI] [PubMed] [Google Scholar]
- Carter G. W., Young P. R., Albert D. H., Bouska J., Dyer R., Bell R. L., Summers J. B., Brooks D. W. 5-lipoxygenase inhibitory activity of zileuton. J Pharmacol Exp Ther. 1991 Mar;256(3):929–937. [PubMed] [Google Scholar]
- Chardin P., Camonis J. H., Gale N. W., van Aelst L., Schlessinger J., Wigler M. H., Bar-Sagi D. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science. 1993 May 28;260(5112):1338–1343. doi: 10.1126/science.8493579. [DOI] [PubMed] [Google Scholar]
- Clancy R. M., Dahinden C. A., Hugli T. E. Oxidation of leukotrienes at the omega end: demonstration of a receptor for the 20-hydroxy derivative of leukotriene B4 on human neutrophils and implications for the analysis of leukotriene receptors. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5729–5733. doi: 10.1073/pnas.81.18.5729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cobb M. H., Hepler J. E., Cheng M., Robbins D. The mitogen-activated protein kinases, ERK1 and ERK2. Semin Cancer Biol. 1994 Aug;5(4):261–268. [PubMed] [Google Scholar]
- Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
- Cronstein B. N., Weissmann G. Targets for antiinflammatory drugs. Annu Rev Pharmacol Toxicol. 1995;35:449–462. doi: 10.1146/annurev.pa.35.040195.002313. [DOI] [PubMed] [Google Scholar]
- Downey G. P., Butler J. R., Brumell J., Borregaard N., Kjeldsen L., Sue-A-Quan A. K., Grinstein S. Chemotactic peptide-induced activation of MEK-2, the predominant isoform in human neutrophils. Inhibition by wortmannin. J Biol Chem. 1996 Aug 30;271(35):21005–21011. doi: 10.1074/jbc.271.35.21005. [DOI] [PubMed] [Google Scholar]
- Erhardt P., Troppmair J., Rapp U. R., Cooper G. M. Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclic AMP in PC12 cells. Mol Cell Biol. 1995 Oct;15(10):5524–5530. doi: 10.1128/mcb.15.10.5524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson A. K., Payne D. M., Martino P. A., Rossomando A. J., Shabanowitz J., Weber M. J., Hunt D. F., Sturgill T. W. Identification by mass spectrometry of threonine 97 in bovine myelin basic protein as a specific phosphorylation site for mitogen-activated protein kinase. J Biol Chem. 1990 Nov 15;265(32):19728–19735. [PubMed] [Google Scholar]
- Force T., Bonventre J. V., Heidecker G., Rapp U., Avruch J., Kyriakis J. M. Enzymatic characteristics of the c-Raf-1 protein kinase. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1270–1274. doi: 10.1073/pnas.91.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner A. M., Vaillancourt R. R., Johnson G. L. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase by G protein and tyrosine kinase oncoproteins. J Biol Chem. 1993 Aug 25;268(24):17896–17901. [PubMed] [Google Scholar]
- Glick J., Santoyo G., Casey P. J. Arachidonate and related unsaturated fatty acids selectively inactivate the guanine nucleotide-binding regulatory protein, Gz. J Biol Chem. 1996 Feb 9;271(6):2949–2954. doi: 10.1074/jbc.271.6.2949. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Furuya W., Butler J. R., Tseng J. Receptor-mediated activation of multiple serine/threonine kinases in human leukocytes. J Biol Chem. 1993 Sep 25;268(27):20223–20231. [PubMed] [Google Scholar]
- Grinstein S., Furuya W. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem. 1992 Sep 5;267(25):18122–18125. [PubMed] [Google Scholar]
- Hall A. Ras-related proteins. Curr Opin Cell Biol. 1993 Apr;5(2):265–268. doi: 10.1016/0955-0674(93)90114-6. [DOI] [PubMed] [Google Scholar]
- Hamm H. E., Gilchrist A. Heterotrimeric G proteins. Curr Opin Cell Biol. 1996 Apr;8(2):189–196. doi: 10.1016/s0955-0674(96)80065-2. [DOI] [PubMed] [Google Scholar]
- Herrmann F., Lindemann A., Gauss J., Mertelsmann R. Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur J Immunol. 1990 Nov;20(11):2513–2516. doi: 10.1002/eji.1830201124. [DOI] [PubMed] [Google Scholar]
- Higgs G. A., McCall E., Youlten L. J. A chemotactic role for prostaglandins released from polymorphonuclear leucocytes during phagocytosis. Br J Pharmacol. 1975 Apr;53(4):539–546. doi: 10.1111/j.1476-5381.1975.tb07392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hii C. S., Ferrante A., Edwards Y. S., Huang Z. H., Hartfield P. J., Rathjen D. A., Poulos A., Murray A. W. Activation of mitogen-activated protein kinase by arachidonic acid in rat liver epithelial WB cells by a protein kinase C-dependent mechanism. J Biol Chem. 1995 Mar 3;270(9):4201–4204. doi: 10.1074/jbc.270.9.4201. [DOI] [PubMed] [Google Scholar]
- Howe L. R., Marshall C. J. Lysophosphatidic acid stimulates mitogen-activated protein kinase activation via a G-protein-coupled pathway requiring p21ras and p74raf-1. J Biol Chem. 1993 Oct 5;268(28):20717–20720. [PubMed] [Google Scholar]
- Hunt T. W., Fields T. A., Casey P. J., Peralta E. G. RGS10 is a selective activator of G alpha i GTPase activity. Nature. 1996 Sep 12;383(6596):175–177. doi: 10.1038/383175a0. [DOI] [PubMed] [Google Scholar]
- Irons L. I., MacLennan A. P. Isolation of the lymphocytosis promoting factor-haemagglutinin of Bordetella pertussis by affinity chromatography. Biochim Biophys Acta. 1979 Sep 29;580(1):175–185. doi: 10.1016/0005-2795(79)90208-3. [DOI] [PubMed] [Google Scholar]
- Kaplan L., Weiss J., Elsbach P. Low concentrations of indomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2955–2958. doi: 10.1073/pnas.75.6.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawauchi K., Lazarus A. H., Sanghera J. S., Man G. L., Pelech S. L., Delovitch T. L. Regulation of BCR- and PKC/Ca(2+)-mediated activation of the Raf1/MEK/MAPK pathway by protein-tyrosine kinase and -tyrosine phosphatase activities. Mol Immunol. 1996 Feb;33(3):287–296. doi: 10.1016/0161-5890(95)00134-4. [DOI] [PubMed] [Google Scholar]
- Knall C., Young S., Nick J. A., Buhl A. M., Worthen G. S., Johnson G. L. Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem. 1996 Feb 2;271(5):2832–2838. doi: 10.1074/jbc.271.5.2832. [DOI] [PubMed] [Google Scholar]
- Kreisle R. A., Parker C. W. Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes. J Exp Med. 1983 Feb 1;157(2):628–641. doi: 10.1084/jem.157.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R., Avruch J. Raf-1 activates MAP kinase-kinase. Nature. 1992 Jul 30;358(6385):417–421. doi: 10.1038/358417a0. [DOI] [PubMed] [Google Scholar]
- Leevers S. J., Paterson H. F., Marshall C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994 Jun 2;369(6479):411–414. doi: 10.1038/369411a0. [DOI] [PubMed] [Google Scholar]
- Maloney C. G., Kutchera W. A., Albertine K. H., McIntyre T. M., Prescott S. M., Zimmerman G. A. Inflammatory agonists induce cyclooxygenase type 2 expression by human neutrophils. J Immunol. 1998 Feb 1;160(3):1402–1410. [PubMed] [Google Scholar]
- McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
- McPhail L. C., Qualliotine-Mann D., Waite K. A. Cell-free activation of neutrophil NADPH oxidase by a phosphatidic acid-regulated protein kinase. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7931–7935. doi: 10.1073/pnas.92.17.7931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meade E. A., Smith W. L., DeWitt D. L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993 Mar 25;268(9):6610–6614. [PubMed] [Google Scholar]
- Morel F., Doussiere J., Vignais P. V. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem. 1991 Nov 1;201(3):523–546. doi: 10.1111/j.1432-1033.1991.tb16312.x. [DOI] [PubMed] [Google Scholar]
- Morrison D. K., Kaplan D. R., Escobedo J. A., Rapp U. R., Roberts T. M., Williams L. T. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell. 1989 Aug 25;58(4):649–657. doi: 10.1016/0092-8674(89)90100-1. [DOI] [PubMed] [Google Scholar]
- Mulcahy L. S., Smith M. R., Stacey D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature. 1985 Jan 17;313(5999):241–243. doi: 10.1038/313241a0. [DOI] [PubMed] [Google Scholar]
- Mócsai A., Bánfi B., Kapus A., Farkas G., Geiszt M., Buday L., Faragó A., Ligeti E. Differential effects of tyrosine kinase inhibitors and an inhibitor of the mitogen-activated protein kinase cascade on degranulation and superoxide production of human neutrophil granulocytes. Biochem Pharmacol. 1997 Oct 1;54(7):781–789. doi: 10.1016/s0006-2952(97)00245-1. [DOI] [PubMed] [Google Scholar]
- O'Flaherty J. T., Jacobson D., Redman J. Mechanism involved in the mobilization of neutrophil calcium by 5-hydroxyeicosatetraenoate. J Immunol. 1988 Jun 15;140(12):4323–4328. [PubMed] [Google Scholar]
- O'Flaherty J. T., Kuroki M., Nixon A. B., Wijkander J., Yee E., Lee S. L., Smitherman P. K., Wykle R. L., Daniel L. W. 5-Oxo-eicosanoids and hematopoietic cytokines cooperate in stimulating neutrophil function and the mitogen-activated protein kinase pathway. J Biol Chem. 1996 Jul 26;271(30):17821–17828. doi: 10.1074/jbc.271.30.17821. [DOI] [PubMed] [Google Scholar]
- O'Flaherty J. T., Rossi A. G. 5-hydroxyicosatetraenoate stimulates neutrophils by a stereospecific, G protein-linked mechanism. J Biol Chem. 1993 Jul 15;268(20):14708–14714. [PubMed] [Google Scholar]
- O'Flaherty J. T., Surles J. R., Redman J., Jacobson D., Piantadosi C., Wykle R. L. Binding and metabolism of platelet-activating factor by human neutrophils. J Clin Invest. 1986 Aug;78(2):381–388. doi: 10.1172/JCI112588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omann G. M., Porasik-Lowes M. M. Graded G-protein uncoupling by pertussis toxin treatment of human polymorphonuclear leukocytes. J Immunol. 1991 Feb 15;146(4):1303–1308. [PubMed] [Google Scholar]
- Ondrey F., Harris J. E., Anderson K. M. Inhibition of U937 eicosanoid and DNA synthesis by 5,8,11,14-eicosatetraynoic acid, an inhibitor of arachidonic acid metabolism and its partial reversal by leukotriene C4. Cancer Res. 1989 Mar 1;49(5):1138–1142. [PubMed] [Google Scholar]
- Philips M. R., Buyon J. P., Winchester R., Weissmann G., Abramson S. B. Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation. J Clin Invest. 1988 Aug;82(2):495–501. doi: 10.1172/JCI113623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philips M. R., Feoktistov A., Pillinger M. H., Abramson S. B. Translocation of p21rac2 from cytosol to plasma membrane is neither necessary nor sufficient for neutrophil NADPH oxidase activity. J Biol Chem. 1995 May 12;270(19):11514–11521. doi: 10.1074/jbc.270.19.11514. [DOI] [PubMed] [Google Scholar]
- Pillinger M. H., Feoktistov A. S., Capodici C., Solitar B., Levy J., Oei T. T., Philips M. R. Mitogen-activated protein kinase in neutrophils and enucleate neutrophil cytoplasts: evidence for regulation of cell-cell adhesion. J Biol Chem. 1996 May 17;271(20):12049–12056. doi: 10.1074/jbc.271.20.12049. [DOI] [PubMed] [Google Scholar]
- Pillinger M. H., Philips M. R., Feoktistov A., Weissmann G. Crosstalk in signal transduction via EP receptors: prostaglandin E1 inhibits chemoattractant-induced mitogen-activated protein kinase activity in human neutrophils. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:311–316. [PubMed] [Google Scholar]
- Pillinger M. H., Volker C., Stock J. B., Weissmann G., Philips M. R. Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils. J Biol Chem. 1994 Jan 14;269(2):1486–1492. [PubMed] [Google Scholar]
- Rao G. N., Baas A. S., Glasgow W. C., Eling T. E., Runge M. S., Alexander R. W. Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J Biol Chem. 1994 Dec 23;269(51):32586–32591. [PubMed] [Google Scholar]
- Riendeau D., Falgueyret J. P., Meisner D., Sherman M. M., Laliberté F., Street I. P. Interfacial catalysis and production of a high ratio of leukotriene A4 to 5-HPETE by 5-lipoxygenase in a coupled assay with phospholipase A2. J Lipid Mediat. 1993 Mar-Apr;6(1-3):23–30. [PubMed] [Google Scholar]
- Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
- Sermon B. A., Eccleston J. F., Skinner R. H., Lowe P. N. Mechanism of inhibition by arachidonic acid of the catalytic activity of Ras GTPase-activating proteins. J Biol Chem. 1996 Jan 19;271(3):1566–1572. doi: 10.1074/jbc.271.3.1566. [DOI] [PubMed] [Google Scholar]
- Smith R. J., Sam L. M., Justen J. M., Leach K. L., Epps D. E. Human polymorphonuclear neutrophil activation with arachidonic acid. Br J Pharmacol. 1987 Jul;91(3):641–649. doi: 10.1111/j.1476-5381.1987.tb11258.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
- Thompson H. L., Shiroo M., Saklatvala J. The chemotactic factor N-formylmethionyl-leucyl-phenylalanine activates microtubule-associated protein 2 (MAP) kinase and a MAP kinase kinase in polymorphonuclear leucocytes. Biochem J. 1993 Mar 1;290(Pt 2):483–488. doi: 10.1042/bj2900483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres M., Hall F. L., O'Neill K. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases. J Immunol. 1993 Feb 15;150(4):1563–1577. [PubMed] [Google Scholar]
- Waddell T. K., Fialkow L., Chan C. K., Kishimoto T. K., Downey G. P. Signaling functions of L-selectin. Enhancement of tyrosine phosphorylation and activation of MAP kinase. J Biol Chem. 1995 Jun 23;270(25):15403–15411. doi: 10.1074/jbc.270.25.15403. [DOI] [PubMed] [Google Scholar]
- Wartmann M., Davis R. J. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem. 1994 Mar 4;269(9):6695–6701. [PubMed] [Google Scholar]
- Wood K. W., Sarnecki C., Roberts T. M., Blenis J. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell. 1992 Mar 20;68(6):1041–1050. doi: 10.1016/0092-8674(92)90076-o. [DOI] [PubMed] [Google Scholar]
- Worthen G. S., Avdi N., Buhl A. M., Suzuki N., Johnson G. L. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase. J Clin Invest. 1994 Aug;94(2):815–823. doi: 10.1172/JCI117401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
- Yu H., Suchard S. J., Nairn R., Jove R. Dissociation of mitogen-activated protein kinase activation from the oxidative burst in differentiated HL-60 cells and human neutrophils. J Biol Chem. 1995 Jun 30;270(26):15719–15724. doi: 10.1074/jbc.270.26.15719. [DOI] [PubMed] [Google Scholar]
