Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 1;102(1):249–263. doi: 10.1172/JCI1248

Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss.

T Guyon 1, A Wakkach 1, S Poea 1, V Mouly 1, I Klingel-Schmitt 1, P Levasseur 1, D Beeson 1, O Asher 1, S Tzartos 1, S Berrih-Aknin 1
PMCID: PMC509087  PMID: 9649579

Abstract

Myasthenia gravis (MG) is a neuromuscular disorder mediated by antibodies directed against the acetylcholine receptor (nAChR) resulting in a functional nAChR loss. To analyze the molecular mechanisms involved at the muscular target site, we studied the expression of nAChR subunits in muscle biopsy specimens from MG patients. By using quantitative PCR with an internal standard for each subunit, we found that the levels of beta-, delta-, and epsilon-subunit mRNA coding for the adult nAChR were increased in severely affected MG patients, matching our previous data on the alpha-subunit. Messenger levels were highly variable in MG patients but not in controls, pointing to individual factors involved in the regulation of nAChR genes. The fetal subunit (gamma-chain) transcripts were almost undetectable in the extrajunctional region of MG muscle, suggesting that gene regulation in MG differs from that in the denervation model, in which nAChR gamma-subunit mRNA is reexpressed. Nicotinic AChR loss mediated by monoclonal anti-nAChR antibodies in both the TE671 muscle cell line and cultured normal human myotubes induces a similar increase in beta- alphand delta-subunit mRNA levels, suggesting the existence of a new muscular signaling pathway system coupled to nAChR internalization and independent of muscle electrical activity. These data demonstrate the existence of a compensatory mechanism regulating the expression of the genes coding for the adult nAChR in patients with MG.

Full Text

The Full Text of this article is available as a PDF (675.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L., Carlson B. M., Henderson L., Goldman D. Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation. J Cell Biol. 1995 Dec;131(5):1341–1349. doi: 10.1083/jcb.131.5.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altiok N., Altiok S., Changeux J. P. Heregulin-stimulated acetylcholine receptor gene expression in muscle: requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity. EMBO J. 1997 Feb 17;16(4):717–725. doi: 10.1093/emboj/16.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altiok N., Bessereau J. L., Changeux J. P. ErbB3 and ErbB2/neu mediate the effect of heregulin on acetylcholine receptor gene expression in muscle: differential expression at the endplate. EMBO J. 1995 Sep 1;14(17):4258–4266. doi: 10.1002/j.1460-2075.1995.tb00100.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asher O., Fuchs S., Zuk D., Rapaport D., Buonanno A. Changes in the expression of mRNAs for myogenic factors and other muscle-specific proteins in experimental autoimmune myasthenia gravis. FEBS Lett. 1992 Mar 24;299(1):15–18. doi: 10.1016/0014-5793(92)80089-y. [DOI] [PubMed] [Google Scholar]
  5. Asher O., Kues W. A., Witzemann V., Tzartos S. J., Fuchs S., Souroujon M. C. Increased gene expression of acetylcholine receptor and myogenic factors in passively transferred experimental autoimmune myasthenia gravis. J Immunol. 1993 Dec 1;151(11):6442–6450. [PubMed] [Google Scholar]
  6. Asher O., Neumann D., Fuchs S. Increased levels of acetylcholine receptor alpha-subunit mRNA in experimental autoimmune myasthenia gravis. FEBS Lett. 1988 Jun 20;233(2):277–281. doi: 10.1016/0014-5793(88)80442-3. [DOI] [PubMed] [Google Scholar]
  7. Asher O., Neumann D., Witzemann V., Fuchs S. Acetylcholine receptor gene expression in experimental autoimmune myasthenia gravis. FEBS Lett. 1990 Jul 16;267(2):231–235. doi: 10.1016/0014-5793(90)80932-9. [DOI] [PubMed] [Google Scholar]
  8. Barkas T., Gabriel J. M., Mauron A., Hughes G. J., Roth B., Alliod C., Tzartos S. J., Ballivet M. Monoclonal antibodies to the main immunogenic region of the nicotinic acetylcholine receptor bind to residues 61-76 of the alpha subunit. J Biol Chem. 1988 Apr 25;263(12):5916–5920. [PubMed] [Google Scholar]
  9. Beeson D., Brydson M., Betty M., Jeremiah S., Povey S., Vincent A., Newsom-Davis J. Primary structure of the human muscle acetylcholine receptor. cDNA cloning of the gamma and epsilon subunits. Eur J Biochem. 1993 Jul 15;215(2):229–238. doi: 10.1111/j.1432-1033.1993.tb18027.x. [DOI] [PubMed] [Google Scholar]
  10. Beeson D., Morris A., Vincent A., Newsom-Davis J. The human muscle nicotinic acetylcholine receptor alpha-subunit exist as two isoforms: a novel exon. EMBO J. 1990 Jul;9(7):2101–2106. doi: 10.1002/j.1460-2075.1990.tb07378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bencherif M., Lukas R. J. Cytochalasin modulation of nicotinic cholinergic receptor expression and muscarinic receptor function in human TE671/RD cells: a possible functional role of the cytoskeleton. J Neurochem. 1993 Sep;61(3):852–864. doi: 10.1111/j.1471-4159.1993.tb03596.x. [DOI] [PubMed] [Google Scholar]
  12. Braun T., Bober E., Buschhausen-Denker G., Kohtz S., Grzeschik K. H., Arnold H. H., Kotz S. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J. 1989 Dec 1;8(12):3617–3625. doi: 10.1002/j.1460-2075.1989.tb08535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Braun T., Bober E., Winter B., Rosenthal N., Arnold H. H. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 1990 Mar;9(3):821–831. doi: 10.1002/j.1460-2075.1990.tb08179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Braun T., Buschhausen-Denker G., Bober E., Tannich E., Arnold H. H. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 1989 Mar;8(3):701–709. doi: 10.1002/j.1460-2075.1989.tb03429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Brenner H. R., Witzemann V., Sakmann B. Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature. 1990 Apr 5;344(6266):544–547. doi: 10.1038/344544a0. [DOI] [PubMed] [Google Scholar]
  16. Buonanno A., Merlie J. P. Transcriptional regulation of nicotinic acetylcholine receptor genes during muscle development. J Biol Chem. 1986 Sep 5;261(25):11452–11455. [PubMed] [Google Scholar]
  17. Clark J., Rocques P. J., Braun T., Bober E., Arnold H. H., Fisher C., Fletcher C., Brown K., Gusterson B. A., Carter R. L. Expression of members of the myf gene family in human rhabdomyosarcomas. Br J Cancer. 1991 Dec;64(6):1039–1042. doi: 10.1038/bjc.1991.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Conroy W. G., Saedi M. S., Lindstrom J. TE671 cells express an abundance of a partially mature acetylcholine receptor alpha subunit which has characteristics of an assembly intermediate. J Biol Chem. 1990 Dec 15;265(35):21642–21651. [PubMed] [Google Scholar]
  19. Conti-Tronconi B. M., Raftery M. A. The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu Rev Biochem. 1982;51:491–530. doi: 10.1146/annurev.bi.51.070182.002423. [DOI] [PubMed] [Google Scholar]
  20. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  21. Drachman D. B. Myasthenia gravis. N Engl J Med. 1994 Jun 23;330(25):1797–1810. doi: 10.1056/NEJM199406233302507. [DOI] [PubMed] [Google Scholar]
  22. Edom F., Mouly V., Barbet J. P., Fiszman M. Y., Butler-Browne G. S. Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev Biol. 1994 Jul;164(1):219–229. doi: 10.1006/dbio.1994.1193. [DOI] [PubMed] [Google Scholar]
  23. Eftimie R., Brenner H. R., Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1349–1353. doi: 10.1073/pnas.88.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Engel A. G., Fumagalli G. Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found Symp. 1982;(90):197–224. doi: 10.1002/9780470720721.ch12. [DOI] [PubMed] [Google Scholar]
  25. Engel A. G., Sahashi K., Fumagalli G. The immunopathology of acquired myasthenia gravis. Ann N Y Acad Sci. 1981;377:158–174. doi: 10.1111/j.1749-6632.1981.tb33730.x. [DOI] [PubMed] [Google Scholar]
  26. Eymard B., de la Porte S., Pannier C., Berrih-Aknin S., Morel E., Fardeau M., Bach J. F., Koenig J. Effect of myasthenic patient sera on the number and distribution of acetylcholine receptors in muscle and nerve-muscle cultures from rat. Correlations with clinical state. J Neurol Sci. 1988 Aug;86(1):41–59. doi: 10.1016/0022-510x(88)90006-8. [DOI] [PubMed] [Google Scholar]
  27. Fambrough D. M., Drachman D. B., Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973 Oct 19;182(4109):293–295. doi: 10.1126/science.182.4109.293. [DOI] [PubMed] [Google Scholar]
  28. Flynn D. C., Leu T. H., Reynolds A. B., Parsons J. T. Identification and sequence analysis of cDNAs encoding a 110-kilodalton actin filament-associated pp60src substrate. Mol Cell Biol. 1993 Dec;13(12):7892–7900. doi: 10.1128/mcb.13.12.7892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fuhrer C., Hall Z. W. Functional interaction of Src family kinases with the acetylcholine receptor in C2 myotubes. J Biol Chem. 1996 Dec 13;271(50):32474–32481. doi: 10.1074/jbc.271.50.32474. [DOI] [PubMed] [Google Scholar]
  30. Gilmour B. P., Fanger G. R., Newton C., Evans S. M., Gardner P. D. Multiple binding sites for myogenic regulatory factors are required for expression of the acetylcholine receptor gamma-subunit gene. J Biol Chem. 1991 Oct 25;266(30):19871–19874. [PubMed] [Google Scholar]
  31. Goldman D., Brenner H. R., Heinemann S. Acetylcholine receptor alpha-, beta-, gamma-, and delta-subunit mRNA levels are regulated by muscle activity. Neuron. 1988 Jun;1(4):329–333. doi: 10.1016/0896-6273(88)90081-5. [DOI] [PubMed] [Google Scholar]
  32. Guyon T., Levasseur P., Truffault F., Cottin C., Gaud C., Berrih-Aknin S. Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction. J Clin Invest. 1994 Jul;94(1):16–24. doi: 10.1172/JCI117302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hill J. A., Jr Nicotinic receptor-associated 43K protein and progressive stabilization of the postsynaptic membrane. Mol Neurobiol. 1992 Spring;6(1):1–17. doi: 10.1007/BF02935564. [DOI] [PubMed] [Google Scholar]
  35. Hughes S. M., Taylor J. M., Tapscott S. J., Gurley C. M., Carter W. J., Peterson C. A. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 1993 Aug;118(4):1137–1147. doi: 10.1242/dev.118.4.1137. [DOI] [PubMed] [Google Scholar]
  36. Joó F., Sávay G., Csillik B. A new modification of the Koelle-Friedenwald method for the histochemical demonstration of cholinesterase activity. Acta Histochem. 1965 Sep 25;22(1):40–45. [PubMed] [Google Scholar]
  37. Kaminski H. J., Kusner L. L., Block C. H. Expression of acetylcholine receptor isoforms at extraocular muscle endplates. Invest Ophthalmol Vis Sci. 1996 Feb;37(2):345–351. [PubMed] [Google Scholar]
  38. Klarsfeld A., Changeux J. P. Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4558–4562. doi: 10.1073/pnas.82.13.4558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Laufer R., Changeux J. P. Activity-dependent regulation of gene expression in muscle and neuronal cells. Mol Neurobiol. 1989 Spring-Summer;3(1-2):1–53. doi: 10.1007/BF02935587. [DOI] [PubMed] [Google Scholar]
  40. Levine G. D., Rosai J. Thymic hyperplasia and neoplasia: a review of current concepts. Hum Pathol. 1978 Sep;9(5):495–515. doi: 10.1016/s0046-8177(78)80131-2. [DOI] [PubMed] [Google Scholar]
  41. Lindstrom J. M., Lambert E. H. Content of acetylcholine receptor and antibodies bound to receptor in myasthenia gravis, experimental autoimmune myasthenia gravis, and Eaton-Lambert syndrome. Neurology. 1978 Feb;28(2):130–138. doi: 10.1212/wnl.28.2.130. [DOI] [PubMed] [Google Scholar]
  42. Lindstrom J. M., Seybold M. E., Lennon V. A., Whittingham S., Duane D. D. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976 Nov;26(11):1054–1059. doi: 10.1212/wnl.26.11.1054. [DOI] [PubMed] [Google Scholar]
  43. Loeb J. A., Fischbach G. D. ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J Cell Biol. 1995 Jul;130(1):127–135. doi: 10.1083/jcb.130.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Luther M. A., Schoepfer R., Whiting P., Casey B., Blatt Y., Montal M. S., Montal M., Linstrom J. A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671. J Neurosci. 1989 Mar;9(3):1082–1096. doi: 10.1523/JNEUROSCI.09-03-01082.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. MacLennan C., Beeson D., Buijs A. M., Vincent A., Newsom-Davis J. Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis. Ann Neurol. 1997 Apr;41(4):423–431. doi: 10.1002/ana.410410404. [DOI] [PubMed] [Google Scholar]
  46. Martinou J. C., Merlie J. P. Nerve-dependent modulation of acetylcholine receptor epsilon-subunit gene expression. J Neurosci. 1991 May;11(5):1291–1299. doi: 10.1523/JNEUROSCI.11-05-01291.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., Sakmann B. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986 May 22;321(6068):406–411. doi: 10.1038/321406a0. [DOI] [PubMed] [Google Scholar]
  48. Morel E., Raimond F., Goulon-Goëau C., Berrih S., Vernet-Der-Garabedian B., Harb J., Bach J. F. Le dosage des anticorps anti-récepteurs de l'acétylcholine dans la myasthénie. Etude de 329 sérums. Nouv Presse Med. 1982 May 22;11(24):1849–1854. [PubMed] [Google Scholar]
  49. Mossman S., Vincent A., Newsom-Davis J. Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity. Lancet. 1986 Jan 18;1(8473):116–119. doi: 10.1016/s0140-6736(86)92259-2. [DOI] [PubMed] [Google Scholar]
  50. Olson E. N. MyoD family: a paradigm for development? Genes Dev. 1990 Sep;4(9):1454–1461. doi: 10.1101/gad.4.9.1454. [DOI] [PubMed] [Google Scholar]
  51. Papadouli I., Sakarellos C., Tzartos S. J. High-resolution epitope mapping and fine antigenic characterization of the main immunogenic region of the acetylcholine receptor. Improving the binding activity of synthetic analogues of the region. Eur J Biochem. 1993 Jan 15;211(1-2):227–234. doi: 10.1111/j.1432-1033.1993.tb19890.x. [DOI] [PubMed] [Google Scholar]
  52. Perlo V. P., Poskanzer D. C., Schwab R. S., Viets H. R., Osserman K. E., Genkins G. Myasthenia gravis: evaluation of treatment in 1,355 patients. Neurology. 1966 May;16(5):431–439. doi: 10.1212/wnl.16.5.431. [DOI] [PubMed] [Google Scholar]
  53. Pestronk A., Drachman D. B., Self S. G. Measurement of junctional acetylcholine receptors in myasthenia gravis: clinical correlates. Muscle Nerve. 1985 Mar-Apr;8(3):245–251. doi: 10.1002/mus.880080311. [DOI] [PubMed] [Google Scholar]
  54. Piette J., Bessereau J. L., Huchet M., Changeux J. P. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature. 1990 May 24;345(6273):353–355. doi: 10.1038/345353a0. [DOI] [PubMed] [Google Scholar]
  55. Plomp J. J., Van Kempen G. T., De Baets M. B., Graus Y. M., Kuks J. B., Molenaar P. C. Acetylcholine release in myasthenia gravis: regulation at single end-plate level. Ann Neurol. 1995 May;37(5):627–636. doi: 10.1002/ana.410370513. [DOI] [PubMed] [Google Scholar]
  56. Popot J. L., Changeux J. P. Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev. 1984 Oct;64(4):1162–1239. doi: 10.1152/physrev.1984.64.4.1162. [DOI] [PubMed] [Google Scholar]
  57. Raftery M. A., Hunkapiller M. W., Strader C. D., Hood L. E. Acetylcholine receptor: complex of homologous subunits. Science. 1980 Jun 27;208(4451):1454–1456. doi: 10.1126/science.7384786. [DOI] [PubMed] [Google Scholar]
  58. Rhodes S. J., Konieczny S. F. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 1989 Dec;3(12B):2050–2061. doi: 10.1101/gad.3.12b.2050. [DOI] [PubMed] [Google Scholar]
  59. Richman D. P., Wollmann R. L., Maselli R. A., Gomez C. M., Corey A. L., Agius M. A., Fairclough R. H. Effector mechanisms of myasthenic antibodies. Ann N Y Acad Sci. 1993 Jun 21;681:264–273. doi: 10.1111/j.1749-6632.1993.tb22891.x. [DOI] [PubMed] [Google Scholar]
  60. Saedi M. S., Anand R., Conroy W. G., Lindstrom J. Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett. 1990 Jul 2;267(1):55–59. doi: 10.1016/0014-5793(90)80286-r. [DOI] [PubMed] [Google Scholar]
  61. Shieh B. H., Ballivet M., Schmidt J. Acetylcholine receptor synthesis rate and levels of receptor subunit messenger RNAs in chick muscle. Neuroscience. 1988 Jan;24(1):175–187. doi: 10.1016/0306-4522(88)90321-1. [DOI] [PubMed] [Google Scholar]
  62. Sophianos D., Tzartos S. J. Fab fragments of monoclonal antibodies protect the human acetylcholine receptor against antigenic modulation caused by myasthenic sera. J Autoimmun. 1989 Dec;2(6):777–789. doi: 10.1016/0896-8411(89)90004-8. [DOI] [PubMed] [Google Scholar]
  63. Toyka K. V., Brachman D. B., Pestronk A., Kao I. Myasthenia gravis: passive transfer from man to mouse. Science. 1975 Oct 24;190(4212):397–399. doi: 10.1126/science.1179220. [DOI] [PubMed] [Google Scholar]
  64. Tzartos S. J., Kokla A., Walgrave S. L., Conti-Tronconi B. M. Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67-76 of the alpha subunit. Proc Natl Acad Sci U S A. 1988 May;85(9):2899–2903. doi: 10.1073/pnas.85.9.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tzartos S. J., Rand D. E., Einarson B. L., Lindstrom J. M. Mapping of surface structures of electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem. 1981 Aug 25;256(16):8635–8645. [PubMed] [Google Scholar]
  66. Tzartos S. J., Remoundos M. S. Precise epitope mapping of monoclonal antibodies to the cytoplasmic side of the acetylcholine receptor alpha subunit. Dissecting a potentially myasthenogenic epitope. Eur J Biochem. 1992 Aug 1;207(3):915–922. doi: 10.1111/j.1432-1033.1992.tb17124.x. [DOI] [PubMed] [Google Scholar]
  67. Tzartos S. J., Sophianos D., Zimmerman K., Starzinski-Powitz A. Antigenic modulation of human myotube acetylcholine receptor by myasthenic sera. Serum titer determines receptor internalization rate. J Immunol. 1986 May 1;136(9):3231–3238. [PubMed] [Google Scholar]
  68. Tzartos S. J., Starzinski-Powitz A. Decrease in acetylcholine-receptor content of human myotube cultures mediated by monoclonal antibodies to alpha, beta and gamma subunits. FEBS Lett. 1986 Feb 3;196(1):91–95. doi: 10.1016/0014-5793(86)80220-4. [DOI] [PubMed] [Google Scholar]
  69. Tzartos S., Langeberg L., Hochschwender S., Swanson L. W., Lindstrom J. Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit and region specificity. J Neuroimmunol. 1986 Jan;10(3):235–253. doi: 10.1016/0165-5728(86)90105-0. [DOI] [PubMed] [Google Scholar]
  70. Vincent A. Immunology of acetylcholine receptors in relation to myasthenia gravis. Physiol Rev. 1980 Jul;60(3):756–824. doi: 10.1152/physrev.1980.60.3.756. [DOI] [PubMed] [Google Scholar]
  71. Witzemann V., Brenner H. R., Sakmann B. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol. 1991 Jul;114(1):125–141. doi: 10.1083/jcb.114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES