Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Sep 15;102(6):1161–1172. doi: 10.1172/JCI3465

Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue.

E D Blume 1, C T Taylor 1, P F Lennon 1, G L Stahl 1, S P Colgan 1
PMCID: PMC509099  PMID: 9739050

Abstract

Endothelial cells play a central role in the coordination of the inflammatory response. In mucosal tissue, such as the lung and intestine, endothelia are anatomically positioned in close proximity to epithelia, providing the potential for cell-cell crosstalk. Thus, in this study endothelial-epithelial biochemical crosstalk pathways were studied using a human intestinal crypt cell line (T84) grown in noncontact coculture with human umbilical vein endothelia. Exposure of such cocultures to endothelial-specific agonists (LPS) resulted in activation of epithelial electrogenic Cl- secretion and vectorial fluid transport. Subsequent experiments revealed that in response to diverse stimuli (LPS, IL-1alpha, TNF-alpha, hypoxia), endothelia produce and secrete a small, stable epithelial secretagogue into conditioned media supernatants. Further experiments identified this secretagogue as 6-keto-PGF1alpha, a stable hydrolysis product of prostacyclin (PGI2). Results obtained with synthetic prostanoids indicated that 6-keto-PGF1alpha (EC50 = 80 nM) and PGI2 stable analogues (EC50 = 280 nM) activate the same basolaterally polarized, Ca2+-coupled epithelial receptor. In summary, these findings reveal a previously unappreciated 6-keto-PGF1alpha receptor on intestinal epithelia, the ligation of which results in activation of electrogenic Cl- secretion. In addition, these data reveal a novel action for the prostacyclin hydrolysis product 6-keto-PGF1alpha and provide a potential endothelial- epithelial crosstalk pathway in mucosal tissue.

Full Text

The Full Text of this article is available as a PDF (326.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett K. E. Positive and negative regulation of chloride secretion in T84 cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C859–C868. doi: 10.1152/ajpcell.1993.265.4.C859. [DOI] [PubMed] [Google Scholar]
  2. Berschneider H. M., Powell D. W. Fibroblasts modulate intestinal secretory responses to inflammatory mediators. J Clin Invest. 1992 Feb;89(2):484–489. doi: 10.1172/JCI115610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blikslager A. T., Roberts M. C., Rhoads J. M., Argenzio R. A. Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum. J Clin Invest. 1997 Oct 15;100(8):1928–1933. doi: 10.1172/JCI119723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brash A. R., Jackson E. K., Saggese C. A., Lawson J. A., Oates J. A., FitzGerald G. A. Metabolic disposition of prostacyclin in humans. J Pharmacol Exp Ther. 1983 Jul;226(1):78–87. [PubMed] [Google Scholar]
  5. Breider M. A. Endothelium and inflammation. J Am Vet Med Assoc. 1993 Jul 15;203(2):300–306. [PubMed] [Google Scholar]
  6. Breyer M. D., Jacobson H. R., Breyer R. M. Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol. 1996 Jan;7(1):8–17. doi: 10.1681/ASN.V718. [DOI] [PubMed] [Google Scholar]
  7. Colgan S. P., Morales V. M., Madara J. L., Polischuk J. E., Balk S. P., Blumberg R. S. IFN-gamma modulates CD1d surface expression on intestinal epithelia. Am J Physiol. 1996 Jul;271(1 Pt 1):C276–C283. doi: 10.1152/ajpcell.1996.271.1.C276. [DOI] [PubMed] [Google Scholar]
  8. Colgan S. P., Resnick M. B., Parkos C. A., Delp-Archer C., McGuirk D., Bacarra A. E., Weller P. F., Madara J. L. IL-4 directly modulates function of a model human intestinal epithelium. J Immunol. 1994 Sep 1;153(5):2122–2129. [PubMed] [Google Scholar]
  9. Cook B. H., Wilson E. R., Jr, Taylor A. E. Intestinal fluid loss in hemorrhagic shock. Am J Physiol. 1971 Nov;221(5):1494–1498. doi: 10.1152/ajplegacy.1971.221.5.1494. [DOI] [PubMed] [Google Scholar]
  10. Dharmsathaphorn K., Madara J. L. Established intestinal cell lines as model systems for electrolyte transport studies. Methods Enzymol. 1990;192:354–389. doi: 10.1016/0076-6879(90)92082-o. [DOI] [PubMed] [Google Scholar]
  11. Falardeau P., Oates J. A., Brash A. R. Quantitative analysis of two dinor urinary metabolites of prostaglandin I2. Anal Biochem. 1981 Aug;115(2):359–367. doi: 10.1016/0003-2697(81)90018-x. [DOI] [PubMed] [Google Scholar]
  12. Futaki N., Takahashi S., Yokoyama M., Arai I., Higuchi S., Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994 Jan;47(1):55–59. doi: 10.1016/0090-6980(94)90074-4. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Haglund U., Hultén L., Ahren C., Lundgren O. Mucosal lesions in the human small intestine in shock. Gut. 1975 Dec;16(12):979–984. doi: 10.1136/gut.16.12.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hinterleitner T. A., Saada J. I., Berschneider H. M., Powell D. W., Valentich J. D. IL-1 stimulates intestinal myofibroblast COX gene expression and augments activation of Cl- secretion in T84 cells. Am J Physiol. 1996 Oct;271(4 Pt 1):C1262–C1268. doi: 10.1152/ajpcell.1996.271.4.C1262. [DOI] [PubMed] [Google Scholar]
  16. Hofman P., D'Andrea L., Carnes D., Colgan S. P., Madara J. L. Intestinal epithelial cytoskeleton selectively constrains lumen-to-tissue migration of neutrophils. Am J Physiol. 1996 Jul;271(1 Pt 1):C312–C320. doi: 10.1152/ajpcell.1996.271.1.C312. [DOI] [PubMed] [Google Scholar]
  17. Hébert R. L., Regnier L., Peterson L. N. Rabbit cortical collecting ducts express a novel prostacyclin receptor. Am J Physiol. 1995 Jan;268(1 Pt 2):F145–F154. doi: 10.1152/ajprenal.1995.268.1.F145. [DOI] [PubMed] [Google Scholar]
  18. Katsuyama M., Sugimoto Y., Namba T., Irie A., Negishi M., Narumiya S., Ichikawa A. Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett. 1994 May 9;344(1):74–78. doi: 10.1016/0014-5793(94)00355-6. [DOI] [PubMed] [Google Scholar]
  19. Kawakami M., Ishibashi S., Ogawa H., Murase T., Takaku F., Shibata S. Cachectin/TNF as well as interleukin-1 induces prostacyclin synthesis in cultured vascular endothelial cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):482–487. doi: 10.1016/s0006-291x(86)80198-x. [DOI] [PubMed] [Google Scholar]
  20. Lawson L. D., Powell D. W. Bradykinin-stimulated eicosanoid synthesis and secretion by rabbit ileal components. Am J Physiol. 1987 Jun;252(6 Pt 1):G783–G790. doi: 10.1152/ajpgi.1987.252.6.G783. [DOI] [PubMed] [Google Scholar]
  21. Lellouche F., Fradin A., Fitzgerald G., Maclouf J. Enzyme immunoassay measurement of the urinary metabolites of thromboxane A2 and prostacyclin. Prostaglandins. 1990 Sep;40(3):297–310. doi: 10.1016/0090-6980(90)90017-p. [DOI] [PubMed] [Google Scholar]
  22. Madara J. L., Parkos C., Colgan S., MacLeod R. J., Nash S., Matthews J., Delp C., Lencer W. Cl- secretion in a model intestinal epithelium induced by a neutrophil-derived secretagogue. J Clin Invest. 1992 Jun;89(6):1938–1944. doi: 10.1172/JCI115800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Madara J. L., Patapoff T. W., Gillece-Castro B., Colgan S. P., Parkos C. A., Delp C., Mrsny R. J. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest. 1993 May;91(5):2320–2325. doi: 10.1172/JCI116462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maier J. A., Hla T., Maciag T. Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. J Biol Chem. 1990 Jul 5;265(19):10805–10808. [PubMed] [Google Scholar]
  25. Maier R. V., Bulger E. M. Endothelial changes after shock and injury. New Horiz. 1996 May;4(2):211–223. [PubMed] [Google Scholar]
  26. McCormick B. A., Colgan S. P., Delp-Archer C., Miller S. I., Madara J. L. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol. 1993 Nov;123(4):895–907. doi: 10.1083/jcb.123.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCormick B. A., Parkos C. A., Colgan S. P., Carnes D. K., Madara J. L. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol. 1998 Jan 1;160(1):455–466. [PubMed] [Google Scholar]
  28. Michiels C., Arnould T., Knott I., Dieu M., Remacle J. Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol. 1993 Apr;264(4 Pt 1):C866–C874. doi: 10.1152/ajpcell.1993.264.4.C866. [DOI] [PubMed] [Google Scholar]
  29. Namba T., Oida H., Sugimoto Y., Kakizuka A., Negishi M., Ichikawa A., Narumiya S. cDNA cloning of a mouse prostacyclin receptor. Multiple signaling pathways and expression in thymic medulla. J Biol Chem. 1994 Apr 1;269(13):9986–9992. [PubMed] [Google Scholar]
  30. Nawroth P. P., Stern D. M., Kaplan K. L., Nossel H. L. Prostacyclin production by perturbed bovine aortic endothelial cells in culture. Blood. 1984 Oct;64(4):801–806. [PubMed] [Google Scholar]
  31. Parkos C. A., Delp C., Arnaout M. A., Madara J. L. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J Clin Invest. 1991 Nov;88(5):1605–1612. doi: 10.1172/JCI115473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pober J. S., Cotran R. S. The role of endothelial cells in inflammation. Transplantation. 1990 Oct;50(4):537–544. doi: 10.1097/00007890-199010000-00001. [DOI] [PubMed] [Google Scholar]
  33. Powell D. W. Barrier function of epithelia. Am J Physiol. 1981 Oct;241(4):G275–G288. doi: 10.1152/ajpgi.1981.241.4.G275. [DOI] [PubMed] [Google Scholar]
  34. Rosenkranz B., Fischer C., Reimann I., Weimer K. E., Beck G., FRölich J. C. Identification of the major metabolite of prostacyclin and 6-ketoprostaglandin F1 alpha in man. Biochim Biophys Acta. 1980 Aug 11;619(2):207–213. doi: 10.1016/0005-2760(80)90069-7. [DOI] [PubMed] [Google Scholar]
  35. Serhan C. N. On the relationship between leukotriene and lipoxin production by human neutrophils: evidence for differential metabolism of 15-HETE and 5-HETE. Biochim Biophys Acta. 1989 Aug 8;1004(2):158–168. doi: 10.1016/0005-2760(89)90264-6. [DOI] [PubMed] [Google Scholar]
  36. Shen T. Y., Winter C. A. Chemical and biological studies on indomethacin, sulindac and their analogs. Adv Drug Res. 1977;12:90–245. [PubMed] [Google Scholar]
  37. Smith J. J., Welsh M. J. Fluid and electrolyte transport by cultured human airway epithelia. J Clin Invest. 1993 Apr;91(4):1590–1597. doi: 10.1172/JCI116365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Strohmeier G. R., Reppert S. M., Lencer W. I., Madara J. L. The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem. 1995 Feb 3;270(5):2387–2394. doi: 10.1074/jbc.270.5.2387. [DOI] [PubMed] [Google Scholar]
  39. Taylor C. T., Dzus A. L., Colgan S. P. Autocrine regulation of epithelial permeability by hypoxia: role for polarized release of tumor necrosis factor alpha. Gastroenterology. 1998 Apr;114(4):657–668. doi: 10.1016/s0016-5085(98)70579-7. [DOI] [PubMed] [Google Scholar]
  40. Taylor C. T., Lisco S. J., Awtrey C. S., Colgan S. P. Hypoxia inhibits cyclic nucleotide-stimulated epithelial ion transport: role for nucleotide cyclases as oxygen sensors. J Pharmacol Exp Ther. 1998 Feb;284(2):568–575. [PubMed] [Google Scholar]
  41. Vane J. R., Anggård E. E., Botting R. M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990 Jul 5;323(1):27–36. doi: 10.1056/NEJM199007053230106. [DOI] [PubMed] [Google Scholar]
  42. Vane J. R., Botting R. M. Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995 Jan 19;75(3):3A–10A. doi: 10.1016/s0002-9149(99)80377-4. [DOI] [PubMed] [Google Scholar]
  43. Waxman K. Shock: ischemia, reperfusion, and inflammation. New Horiz. 1996 May;4(2):153–160. [PubMed] [Google Scholar]
  44. Whittaker N., Bunting S., Salmon J., Moncada S., Vane J. R., Johnson R. A., Morton D. R., Kinner J. H., Gorman R. R., McGuire J. C. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins. 1976 Dec;12(6):915–928. doi: 10.1016/0090-6980(76)90126-x. [DOI] [PubMed] [Google Scholar]
  45. Zünd G., Madara J. L., Dzus A. L., Awtrey C. S., Colgan S. P. Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion. J Biol Chem. 1996 Mar 29;271(13):7460–7464. doi: 10.1074/jbc.271.13.7460. [DOI] [PubMed] [Google Scholar]
  46. Zünd G., Nelson D. P., Neufeld E. J., Dzus A. L., Bischoff J., Mayer J. E., Colgan S. P. Hypoxia enhances stimulus-dependent induction of E-selectin on aortic endothelial cells. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7075–7080. doi: 10.1073/pnas.93.14.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zünd G., Uezono S., Stahl G. L., Dzus A. L., McGowan F. X., Hickey P. R., Colgan S. P. Hypoxia enhances induction of endothelial ICAM-1: role for metabolic acidosis and proteasomes. Am J Physiol. 1997 Nov;273(5 Pt 1):C1571–C1580. doi: 10.1152/ajpcell.1997.273.5.C1571. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES