Abstract
Maintenance of hepatic microcirculatory flow after ischemia of the liver is essential to prevent hepatic dysfunction. Thus, we determined the differential role of carbon monoxide (CO) and nitric oxide (NO) in the intrinsic control of sinusoidal perfusion, mitochondrial redox state, and bile production in the isolated perfused rat liver after hemorrhagic shock. Administration of tin protoporphyrin-IX (50 microM), a specific inhibitor of the CO generating enzyme heme oxygenase, caused a decrease in sinusoidal flow that was more pronounced after shock compared with sham shock, as determined by in situ epifluorescence microscopy. This was associated with a shift in hepatocellular redox potential to a more reduced state (increased fluorescence intensity of reduced pyridine nucleotides in hepatocytes, decreased acetoacetate/beta-hydroxybutyrate ratio in the perfusate) and a profound reduction in bile flow. In sharp contrast, the preferential inhibitor of the inducible isoform of NO synthase S-methylisothiourea sulfate (100 microM) did not affect sinusoidal flow, hepatic redox state, or function. This indicates that 1.) endogenously generated CO preserves sinusoidal perfusion after hemorrhagic shock, 2.) protection of the hepatic microcirculation by CO may serve to limit shock-induced liver dysfunction, and 3.) in contrast to CO, inducible NO synthase-derived NO is of only minor importance for the intrinsic control of hepatic perfusion and function under these conditions.
Full Text
The Full Text of this article is available as a PDF (288.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayuse T., Brienza N., Revelly J. P., Boitnott J. K., Robotham J. L. Role of nitric oxide in porcine liver circulation under normal and endotoxemic conditions. J Appl Physiol (1985) 1995 Apr;78(4):1319–1329. doi: 10.1152/jappl.1995.78.4.1319. [DOI] [PubMed] [Google Scholar]
- Bauer I., Bauer M., Pannen B. H., Leinwand M. J., Zhang J. X., Clemens M. G. Chronic ethanol consumption exacerbates liver injury following hemorrhagic shock: role of sinusoidal perfusion failure. Shock. 1995 Nov;4(5):324–331. doi: 10.1097/00024382-199511000-00003. [DOI] [PubMed] [Google Scholar]
- Bauer I., Wanner G. A., Rensing H., Alte C., Miescher E. A., Wolf B., Pannen B. H., Clemens M. G., Bauer M. Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver. Hepatology. 1998 Mar;27(3):829–838. doi: 10.1002/hep.510270327. [DOI] [PubMed] [Google Scholar]
- Bauer M., Marzi I., Ziegenfuss T., Seeck G., Bühren V., Larsen R. Comparative effects of crystalloid and small volume hypertonic hyperoncotic fluid resuscitation on hepatic microcirculation after hemorrhagic shock. Circ Shock. 1993 Jul;40(3):187–193. [PubMed] [Google Scholar]
- Bauer M., Pannen B. H., Bauer I., Herzog C., Wanner G. A., Hanselmann R., Zhang J. X., Clemens M. G., Larsen R. Evidence for a functional link between stress response and vascular control in hepatic portal circulation. Am J Physiol. 1996 Nov;271(5 Pt 1):G929–G935. doi: 10.1152/ajpgi.1996.271.5.G929. [DOI] [PubMed] [Google Scholar]
- Bauer M., Zhang J. X., Bauer I., Clemens M. G. ET-1 induced alterations of hepatic microcirculation: sinusoidal and extrasinusoidal sites of action. Am J Physiol. 1994 Jul;267(1 Pt 1):G143–G149. doi: 10.1152/ajpgi.1994.267.1.G143. [DOI] [PubMed] [Google Scholar]
- CHANCE B., COHEN P., JOBSIS F., SCHOENER B. Intracellular oxidation-reduction states in vivo. Science. 1962 Aug 17;137(3529):499–508. doi: 10.1126/science.137.3529.499. [DOI] [PubMed] [Google Scholar]
- Chun K., Zhang J., Biewer J., Ferguson D., Clemens M. G. Microcirculatory failure determines lethal hepatocyte injury in ischemic/reperfused rat livers. Shock. 1994 Jan;1(1):3–9. doi: 10.1097/00024382-199401000-00002. [DOI] [PubMed] [Google Scholar]
- Clemens M. G., McDonagh P. F., Chaudry I. H., Baue A. E. Hepatic microcirculatory failure after ischemia and reperfusion: improvement with ATP-MgCl2 treatment. Am J Physiol. 1985 Jun;248(6 Pt 2):H804–H811. doi: 10.1152/ajpheart.1985.248.6.H804. [DOI] [PubMed] [Google Scholar]
- Cook H. T., Bune A. J., Jansen A. S., Taylor G. M., Loi R. K., Cattell V. Cellular localization of inducible nitric oxide synthase in experimental endotoxic shock in the rat. Clin Sci (Lond) 1994 Aug;87(2):179–186. doi: 10.1042/cs0870179. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 1991;28(1-3):52–61. doi: 10.1159/000158843. [DOI] [PubMed] [Google Scholar]
- Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goda N., Suzuki K., Naito M., Takeoka S., Tsuchida E., Ishimura Y., Tamatani T., Suematsu M. Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J Clin Invest. 1998 Feb 1;101(3):604–612. doi: 10.1172/JCI1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross J. F., Aroesty J. Mathematical models of capillary flow: a critical review. Biorheology. 1972 Dec;9(4):225–264. doi: 10.3233/bir-1972-9402. [DOI] [PubMed] [Google Scholar]
- Harbrecht B. G., Wu B., Watkins S. C., Marshall H. P., Jr, Peitzman A. B., Billiar T. R. Inhibition of nitric oxide synthase during hemorrhagic shock increases hepatic injury. Shock. 1995 Nov;4(5):332–337. doi: 10.1097/00024382-199511000-00004. [DOI] [PubMed] [Google Scholar]
- Horie Y., Wolf R., Anderson D. C., Granger D. N. Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion. J Clin Invest. 1997 Feb 15;99(4):781–788. doi: 10.1172/JCI119224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob T. D., Ochoa J. B., Udekwu A. O., Wilkinson J., Murray T., Billiar T. R., Simmons R. L., Marion D. W., Peitzman A. B. Nitric oxide production is inhibited in trauma patients. J Trauma. 1993 Oct;35(4):590–597. doi: 10.1097/00005373-199310000-00015. [DOI] [PubMed] [Google Scholar]
- Kaneda K., Ekataksin W., Sogawa M., Matsumura A., Cho A., Kawada N. Endothelin-1-induced vasoconstriction causes a significant increase in portal pressure of rat liver: localized constrictive effect on the distal segment of preterminal portal venules as revealed by light and electron microscopy and serial reconstruction. Hepatology. 1998 Mar;27(3):735–747. doi: 10.1002/hep.510270315. [DOI] [PubMed] [Google Scholar]
- Kawamura E., Yamanaka N., Okamoto E., Tomoda F., Furukawa K. Response of plasma and tissue endothelin-1 to liver ischemia and its implication in ischemia-reperfusion injury. Hepatology. 1995 Apr;21(4):1138–1143. [PubMed] [Google Scholar]
- Kharitonov V. G., Sharma V. S., Pilz R. B., Magde D., Koesling D. Basis of guanylate cyclase activation by carbon monoxide. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2568–2571. doi: 10.1073/pnas.92.7.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koo A., Liang I. Y. Blood flow in hepatic sinusoids in experimental hemorrhagic shock in the rat. Microvasc Res. 1977 May;13(3):315–325. doi: 10.1016/0026-2862(77)90097-8. [DOI] [PubMed] [Google Scholar]
- Maass-Moreno R., Rothe C. F. Distribution of pressure gradients along hepatic vasculature. Am J Physiol. 1997 Jun;272(6 Pt 2):H2826–H2832. doi: 10.1152/ajpheart.1997.272.6.H2826. [DOI] [PubMed] [Google Scholar]
- MacPhee P. J., Schmidt E. E., Groom A. C. Evidence for Kupffer cell migration along liver sinusoids, from high-resolution in vivo microscopy. Am J Physiol. 1992 Jul;263(1 Pt 1):G17–G23. doi: 10.1152/ajpgi.1992.263.1.G17. [DOI] [PubMed] [Google Scholar]
- Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988 Jul;2(10):2557–2568. [PubMed] [Google Scholar]
- McCuskey R. S. Does a toxic gas regulate hepatic sinusoidal blood flow? J Clin Invest. 1995 Nov;96(5):2099–2099. doi: 10.1172/JCI118259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCuskey R. S., Reilly F. D. Hepatic microvasculature: dynamic structure and its regulation. Semin Liver Dis. 1993 Feb;13(1):1–12. doi: 10.1055/s-2007-1007333. [DOI] [PubMed] [Google Scholar]
- McDonagh P. F., Williams S. K. The preparation and use of fluorescent-protein conjugates for microvascular research. Microvasc Res. 1984 Jan;27(1):14–27. doi: 10.1016/0026-2862(84)90038-4. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Morita T., Perrella M. A., Lee M. E., Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1475–1479. doi: 10.1073/pnas.92.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakatani T., Spolter L., Kobayashi K. Arterial ketone body ratio as a parameter of hepatic mitochondrial redox state during and after hemorrhagic shock. World J Surg. 1995 Jul-Aug;19(4):592–596. doi: 10.1007/BF00294729. [DOI] [PubMed] [Google Scholar]
- Nishida J., McCuskey R. S., McDonnell D., Fox E. S. Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol. 1994 Dec;267(6 Pt 1):G1135–G1141. doi: 10.1152/ajpgi.1994.267.6.G1135. [DOI] [PubMed] [Google Scholar]
- Ozawa K., Chance B., Tanaka A., Iwata S., Kitai T., Ikai I. Linear correlation between acetoacetate/beta-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissue. Biochim Biophys Acta. 1992 Apr 14;1138(4):350–352. doi: 10.1016/0925-4439(92)90014-e. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Pannen B. H., Al-Adili F., Bauer M., Clemens M. G., Geiger K. K. Role of endothelins and nitric oxide in hepatic reperfusion injury in the rat. Hepatology. 1998 Mar;27(3):755–764. doi: 10.1002/hep.510270317. [DOI] [PubMed] [Google Scholar]
- Pannen B. H., Bauer M., Nöldge-Schomburg G. F., Zhang J. X., Robotham J. L., Clemens M. G., Geiger K. K. Regulation of hepatic blood flow during resuscitation from hemorrhagic shock: role of NO and endothelins. Am J Physiol. 1997 Jun;272(6 Pt 2):H2736–H2745. doi: 10.1152/ajpheart.1997.272.6.H2736. [DOI] [PubMed] [Google Scholar]
- Pannen B. H., Bauer M., Zhang J. X., Robotham J. L., Clemens M. G. A time-dependent balance between endothelins and nitric oxide regulating portal resistance after endotoxin. Am J Physiol. 1996 Nov;271(5 Pt 2):H1953–H1961. doi: 10.1152/ajpheart.1996.271.5.H1953. [DOI] [PubMed] [Google Scholar]
- Pannen B. H., Robotham J. L. The acute-phase response. New Horiz. 1995 May;3(2):183–197. [PubMed] [Google Scholar]
- Pinzani M., Failli P., Ruocco C., Casini A., Milani S., Baldi E., Giotti A., Gentilini P. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest. 1992 Aug;90(2):642–646. doi: 10.1172/JCI115905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology. 1997 Jan;25(1):2–5. doi: 10.1053/jhep.1997.v25.ajhep0250002. [DOI] [PubMed] [Google Scholar]
- Scholz R., Thurman R. G., Williamson J. R., Chance B., Bücher T. Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem. 1969 May 10;244(9):2317–2324. [PubMed] [Google Scholar]
- Southan G. J., Szabó C., Thiemermann C. Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br J Pharmacol. 1995 Jan;114(2):510–516. doi: 10.1111/j.1476-5381.1995.tb13256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suematsu M., Goda N., Sano T., Kashiwagi S., Egawa T., Shinoda Y., Ishimura Y. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest. 1995 Nov;96(5):2431–2437. doi: 10.1172/JCI118300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suematsu M., Kashiwagi S., Sano T., Goda N., Shinoda Y., Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1333–1337. doi: 10.1006/bbrc.1994.2811. [DOI] [PubMed] [Google Scholar]
- Suematsu M., Oda M., Suzuki H., Kaneko H., Watanabe N., Furusho T., Masushige S., Tsuchiya M. Intravital and electron microscopic observation of Ito cells in rat hepatic microcirculation. Microvasc Res. 1993 Jul;46(1):28–42. doi: 10.1006/mvre.1993.1033. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Suematsu M., Ishii H., Kato S., Miki H., Mori M., Ishimura Y., Nishino T., Tsuchiya M. Prostaglandin E1 abrogates early reductive stress and zone-specific paradoxical oxidative injury in hypoperfused rat liver. J Clin Invest. 1994 Jan;93(1):155–164. doi: 10.1172/JCI116939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabó C., Southan G. J., Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12472–12476. doi: 10.1073/pnas.91.26.12472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiemermann C., Szabó C., Mitchell J. A., Vane J. R. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):267–271. doi: 10.1073/pnas.90.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303–353. doi: 10.1016/s0074-7696(08)61977-4. [DOI] [PubMed] [Google Scholar]
- Wang P., Ba Z. F., Chaudry I. H. Endothelial cell dysfunction occurs very early following trauma-hemorrhage and persists despite fluid resuscitation. Am J Physiol. 1993 Sep;265(3 Pt 2):H973–H979. doi: 10.1152/ajpheart.1993.265.3.H973. [DOI] [PubMed] [Google Scholar]
- Yoshinaga T., Sassa S., Kappas A. Purification and properties of bovine spleen heme oxygenase. Amino acid composition and sites of action of inhibitors of heme oxidation. J Biol Chem. 1982 Jul 10;257(13):7778–7785. [PubMed] [Google Scholar]
- Zhang J. X., Bauer M., Clemens M. G. Vessel- and target cell-specific actions of endothelin-1 and endothelin-3 in rat liver. Am J Physiol. 1995 Aug;269(2 Pt 1):G269–G277. doi: 10.1152/ajpgi.1995.269.2.G269. [DOI] [PubMed] [Google Scholar]
- Zhang J. X., Pegoli W., Jr, Clemens M. G. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol. 1994 Apr;266(4 Pt 1):G624–G632. doi: 10.1152/ajpgi.1994.266.4.G624. [DOI] [PubMed] [Google Scholar]