Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Nov 1;102(9):1662–1673. doi: 10.1172/JCI4105

The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer.

J Kleeff 1, T Ishiwata 1, A Kumbasar 1, H Friess 1, M W Büchler 1, A D Lander 1, M Korc 1
PMCID: PMC509114  PMID: 9802880

Abstract

Heparan sulfate proteoglycans (HSPGs) play diverse roles in cell recognition, growth, and adhesion. In vitro studies suggest that cell-surface HSPGs act as coreceptors for heparin-binding mitogenic growth factors. Here we show that the glycosylphosphatidylinositol- (GPI-) anchored HSPG glypican-1 is strongly expressed in human pancreatic cancer, both by the cancer cells and the adjacent fibroblasts, whereas expression of glypican-1 is low in the normal pancreas and in chronic pancreatitis. Treatment of two pancreatic cancer cell lines, which express glypican-1, with the enzyme phosphoinositide-specific phospholipase-C (PI-PLC) abrogated their mitogenic responses to two heparin-binding growth factors that are commonly overexpressed in pancreatic cancer: fibroblast growth factor 2 (FGF2) and heparin-binding EGF-like growth factor (HB-EGF). PI-PLC did not alter the response to the non-heparin-binding growth factors EGF and IGF-1. Stable expression of a form of glypican-1 engineered to possess a transmembrane domain instead of a GPI anchor conferred resistance to the inhibitory effects of PI-PLC on growth factor responsiveness. Furthermore, transfection of a glypican-1 antisense construct attenuated glypican-1 protein levels and the mitogenic response to FGF2 and HB-EGF. We propose that glypican-1 plays an essential role in the responses of pancreatic cancer cells to certain mitogenic stimuli, that it is relatively unique in relation to other HSPGs, and that its expression by pancreatic cancer cells may be of importance in the pathobiology of this disorder.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arreaza G., Brown D. A. Sorting and intracellular trafficking of a glycosylphosphatidylinositol-anchored protein and two hybrid transmembrane proteins with the same ectodomain in Madin-Darby canine kidney epithelial cells. J Biol Chem. 1995 Oct 6;270(40):23641–23647. doi: 10.1074/jbc.270.40.23641. [DOI] [PubMed] [Google Scholar]
  2. Asundi V. K., Keister B. F., Stahl R. C., Carey D. J. Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Exp Cell Res. 1997 Jan 10;230(1):145–153. doi: 10.1006/excr.1996.3400. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L., Korc M. Growth inhibition of human pancreatic carcinoma cells by transforming growth factor beta-1. Growth Factors. 1993;8(1):23–34. doi: 10.3109/08977199309029131. [DOI] [PubMed] [Google Scholar]
  4. Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
  5. Bonneh-Barkay D., Shlissel M., Berman B., Shaoul E., Admon A., Vlodavsky I., Carey D. J., Asundi V. K., Reich-Slotky R., Ron D. Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J Biol Chem. 1997 May 9;272(19):12415–12421. doi: 10.1074/jbc.272.19.12415. [DOI] [PubMed] [Google Scholar]
  6. Carey D. J., Conner K., Asundi V. K., O'Mahony D. J., Stahl R. C., Showalter L., Cizmeci-Smith G., Hartman J., Rothblum L. I. cDNA cloning, genomic organization, and in vivo expression of rat N-syndecan. J Biol Chem. 1997 Jan 31;272(5):2873–2879. doi: 10.1074/jbc.272.5.2873. [DOI] [PubMed] [Google Scholar]
  7. Carey D. J., Evans D. M. Membrane anchoring of heparan sulfate proteoglycans by phosphatidylinositol and kinetics of synthesis of peripheral and detergent-solubilized proteoglycans in Schwann cells. J Cell Biol. 1989 May;108(5):1891–1897. doi: 10.1083/jcb.108.5.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiang M. K., Flanagan J. G. Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors. 1995;12(1):1–10. doi: 10.3109/08977199509003208. [DOI] [PubMed] [Google Scholar]
  9. Chintala S. K., Miller R. R., McDevitt C. A. Role of heparan sulfate in the terminal differentiation of growth plate chondrocytes. Arch Biochem Biophys. 1995 Jan 10;316(1):227–234. doi: 10.1006/abbi.1995.1032. [DOI] [PubMed] [Google Scholar]
  10. David G. Integral membrane heparan sulfate proteoglycans. FASEB J. 1993 Aug;7(11):1023–1030. doi: 10.1096/fasebj.7.11.8370471. [DOI] [PubMed] [Google Scholar]
  11. David G., Lories V., Decock B., Marynen P., Cassiman J. J., Van den Berghe H. Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol. 1990 Dec;111(6 Pt 2):3165–3176. doi: 10.1083/jcb.111.6.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Klerk D. P., Lee D. V., Human H. J. Glycosaminoglycans of human prostatic cancer. J Urol. 1984 May;131(5):1008–1012. doi: 10.1016/s0022-5347(17)50750-8. [DOI] [PubMed] [Google Scholar]
  13. De Klerk D. P. The glycosaminoglycans of human bladder cancers of varying grade and stage. J Urol. 1985 Nov;134(5):978–981. doi: 10.1016/s0022-5347(17)47570-7. [DOI] [PubMed] [Google Scholar]
  14. Delehedde M., Deudon E., Boilly B., Hondermarck H. Heparan sulfate proteoglycans play a dual role in regulating fibroblast growth factor-2 mitogenic activity in human breast cancer cells. Exp Cell Res. 1996 Dec 15;229(2):398–406. doi: 10.1006/excr.1996.0385. [DOI] [PubMed] [Google Scholar]
  15. Ebert M., Yokoyama M., Kobrin M. S., Friess H., Lopez M. E., Büchler M. W., Johnson G. R., Korc M. Induction and expression of amphiregulin in human pancreatic cancer. Cancer Res. 1994 Aug 1;54(15):3959–3962. [PubMed] [Google Scholar]
  16. Filla M. S., Dam P., Rapraeger A. C. The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J Cell Physiol. 1998 Mar;174(3):310–321. doi: 10.1002/(SICI)1097-4652(199803)174:3<310::AID-JCP5>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  17. Filmus J., Church J. G., Buick R. N. Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol. 1988 Oct;8(10):4243–4249. doi: 10.1128/mcb.8.10.4243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Freeman C., Parish C. R. A rapid quantitative assay for the detection of mammalian heparanase activity. Biochem J. 1997 Jul 1;325(Pt 1):229–237. doi: 10.1042/bj3250229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fukuda K., Inui Y., Kawata S., Higashiyama S., Matsuda Y., Maeda Y., Igura T., Yoshida S., Taniguchi N., Matsuzawa Y. Increased mitogenic response to heparin-binding epidermal growth factor-like growth factor in vascular smooth muscle cells of diabetic rats. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1680–1687. doi: 10.1161/01.atv.15.10.1680. [DOI] [PubMed] [Google Scholar]
  20. Herndon M. E., Lander A. D. A diverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system. Neuron. 1990 Jun;4(6):949–961. doi: 10.1016/0896-6273(90)90148-9. [DOI] [PubMed] [Google Scholar]
  21. Inki P., Joensuu H., Grénman R., Klemi P., Jalkanen M. Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck. Br J Cancer. 1994 Aug;70(2):319–323. doi: 10.1038/bjc.1994.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Itoh K., Sokol S. Y. Heparan sulfate proteoglycans are required for mesoderm formation in Xenopus embryos. Development. 1994 Sep;120(9):2703–2711. doi: 10.1242/dev.120.9.2703. [DOI] [PubMed] [Google Scholar]
  23. Ivins J. K., Litwack E. D., Kumbasar A., Stipp C. S., Lander A. D. Cerebroglycan, a developmentally regulated cell-surface heparan sulfate proteoglycan, is expressed on developing axons and growth cones. Dev Biol. 1997 Apr 15;184(2):320–332. doi: 10.1006/dbio.1997.8532. [DOI] [PubMed] [Google Scholar]
  24. Klöppel G., Maillet B. Chronic pancreatitis: evolution of the disease. Hepatogastroenterology. 1991 Oct;38(5):408–412. [PubMed] [Google Scholar]
  25. Kobrin M. S., Funatomi H., Friess H., Buchler M. W., Stathis P., Korc M. Induction and expression of heparin-binding EGF-like growth factor in human pancreatic cancer. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1705–1709. doi: 10.1006/bbrc.1994.2131. [DOI] [PubMed] [Google Scholar]
  26. Korc M., Chandrasekar B., Yamanaka Y., Friess H., Buchier M., Beger H. G. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest. 1992 Oct;90(4):1352–1360. doi: 10.1172/JCI116001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kornmann M., Ishiwata T., Beger H. G., Korc M. Fibroblast growth factor-5 stimulates mitogenic signaling and is overexpressed in human pancreatic cancer: evidence for autocrine and paracrine actions. Oncogene. 1997 Sep 18;15(12):1417–1424. doi: 10.1038/sj.onc.1201307. [DOI] [PubMed] [Google Scholar]
  28. Kosir M. A., Quinn C. C., Zukowski K. L., Grignon D. J., Ledbetter S. Human prostate carcinoma cells produce extracellular heparanase. J Surg Res. 1997 Jan;67(1):98–105. doi: 10.1006/jsre.1996.4976. [DOI] [PubMed] [Google Scholar]
  29. Kovalszky I., Schaff Z., Jeney A. Potential markers (enzymes, proteoglycans) for human liver tumors. Acta Biomed Ateneo Parmense. 1993;64(5-6):157–163. [PubMed] [Google Scholar]
  30. Laskov R., Michaeli R. I., Sharir H., Yefenof E., Vlodavsky I. Production of heparanase by normal and neoplastic murine B-lymphocytes. Int J Cancer. 1991 Jan 2;47(1):92–98. doi: 10.1002/ijc.2910470117. [DOI] [PubMed] [Google Scholar]
  31. LeBaron R. G., Hök A., Esko J. D., Gay S., Hök M. Binding of heparan sulfate to type V collagen. A mechanism of cell-substrate adhesion. J Biol Chem. 1989 May 15;264(14):7950–7956. [PubMed] [Google Scholar]
  32. Levy P., Munier A., Baron-Delage S., Di Gioia Y., Gespach C., Capeau J., Cherqui G. Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes. Br J Cancer. 1996 Aug;74(3):423–431. doi: 10.1038/bjc.1996.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lindsay S., Ireland M., O'Brien O., Clayton-Smith J., Hurst J. A., Mann J., Cole T., Sampson J., Slaney S., Schlessinger D. Large scale deletions in the GPC3 gene may account for a minority of cases of Simpson-Golabi-Behmel syndrome. J Med Genet. 1997 Jun;34(6):480–483. doi: 10.1136/jmg.34.6.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Litwack E. D., Ivins J. K., Kumbasar A., Paine-Saunders S., Stipp C. S., Lander A. D. Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev Dyn. 1998 Jan;211(1):72–87. doi: 10.1002/(SICI)1097-0177(199801)211:1<72::AID-AJA7>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  35. Litwack E. D., Stipp C. S., Kumbasar A., Lander A. D. Neuronal expression of glypican, a cell-surface glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan, in the adult rat nervous system. J Neurosci. 1994 Jun;14(6):3713–3724. doi: 10.1523/JNEUROSCI.14-06-03713.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Miyazaki Y., Shinomura Y., Higashiyama S., Kanayama S., Higashimoto Y., Tsutsui S., Zushi S., Taniguchi N., Matsuzawa Y. Heparin-binding EGF-like growth factor is an autocrine growth factor for rat gastric epithelial cells. Biochem Biophys Res Commun. 1996 Jun 5;223(1):36–41. doi: 10.1006/bbrc.1996.0842. [DOI] [PubMed] [Google Scholar]
  37. Nackaerts K., Verbeken E., Deneffe G., Vanderschueren B., Demedts M., David G. Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer. 1997 Jun 20;74(3):335–345. doi: 10.1002/(sici)1097-0215(19970620)74:3<335::aid-ijc18>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  38. Nakato H., Futch T. A., Selleck S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development. 1995 Nov;121(11):3687–3702. doi: 10.1242/dev.121.11.3687. [DOI] [PubMed] [Google Scholar]
  39. Olwin B. B., Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol. 1992 Aug;118(3):631–639. doi: 10.1083/jcb.118.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ornitz D. M., Yayon A., Flanagan J. G., Svahn C. M., Levi E., Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol. 1992 Jan;12(1):240–247. doi: 10.1128/mcb.12.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pantoliano M. W., Horlick R. A., Springer B. A., Van Dyk D. E., Tobery T., Wetmore D. R., Lear J. D., Nahapetian A. T., Bradley J. D., Sisk W. P. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry. 1994 Aug 30;33(34):10229–10248. doi: 10.1021/bi00200a003. [DOI] [PubMed] [Google Scholar]
  42. Pilia G., Hughes-Benzie R. M., MacKenzie A., Baybayan P., Chen E. Y., Huber R., Neri G., Cao A., Forabosco A., Schlessinger D. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996 Mar;12(3):241–247. doi: 10.1038/ng0396-241. [DOI] [PubMed] [Google Scholar]
  43. Prigent S. A., Lemoine N. R. The type 1 (EGFR-related) family of growth factor receptors and their ligands. Prog Growth Factor Res. 1992;4(1):1–24. doi: 10.1016/0955-2235(92)90002-y. [DOI] [PubMed] [Google Scholar]
  44. Raab G., Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997 Dec 9;1333(3):F179–F199. doi: 10.1016/s0304-419x(97)00024-3. [DOI] [PubMed] [Google Scholar]
  45. Raitano A. B., Korc M. Tumor necrosis factor up-regulates gamma-interferon binding in a human carcinoma cell line. J Biol Chem. 1990 Jun 25;265(18):10466–10472. [PubMed] [Google Scholar]
  46. Rapraeger A. C., Guimond S., Krufka A., Olwin B. B. Regulation by heparan sulfate in fibroblast growth factor signaling. Methods Enzymol. 1994;245:219–240. doi: 10.1016/0076-6879(94)45013-7. [DOI] [PubMed] [Google Scholar]
  47. Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  48. Rapraeger A., Jalkanen M., Endo E., Koda J., Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem. 1985 Sep 15;260(20):11046–11052. [PubMed] [Google Scholar]
  49. Reichsman F., Smith L., Cumberledge S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol. 1996 Nov;135(3):819–827. doi: 10.1083/jcb.135.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Roghani M., Mansukhani A., Dell'Era P., Bellosta P., Basilico C., Rifkin D. B., Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem. 1994 Feb 11;269(6):3976–3984. [PubMed] [Google Scholar]
  51. Sakata H., Stahl S. J., Taylor W. G., Rosenberg J. M., Sakaguchi K., Wingfield P. T., Rubin J. S. Heparin binding and oligomerization of hepatocyte growth factor/scatter factor isoforms. Heparan sulfate glycosaminoglycan requirement for Met binding and signaling. J Biol Chem. 1997 Apr 4;272(14):9457–9463. doi: 10.1074/jbc.272.14.9457. [DOI] [PubMed] [Google Scholar]
  52. Saksela O., Rifkin D. B. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol. 1990 Mar;110(3):767–775. doi: 10.1083/jcb.110.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Saunders S., Paine-Saunders S., Lander A. D. Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain. Dev Biol. 1997 Oct 1;190(1):78–93. doi: 10.1006/dbio.1997.8690. [DOI] [PubMed] [Google Scholar]
  54. Schlessinger J., Lax I., Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell. 1995 Nov 3;83(3):357–360. doi: 10.1016/0092-8674(95)90112-4. [DOI] [PubMed] [Google Scholar]
  55. Schwarz L. C., Inoue T., Irimura T., Damen J. E., Greenberg A. H., Wright J. A. Relationships between heparanase activity and increasing metastatic potential of fibroblasts transfected with various oncogenes. Cancer Lett. 1990 Jun 15;51(3):187–192. doi: 10.1016/0304-3835(90)90101-3. [DOI] [PubMed] [Google Scholar]
  56. Spivak-Kroizman T., Lemmon M. A., Dikic I., Ladbury J. E., Pinchasi D., Huang J., Jaye M., Crumley G., Schlessinger J., Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994 Dec 16;79(6):1015–1024. doi: 10.1016/0092-8674(94)90032-9. [DOI] [PubMed] [Google Scholar]
  57. Stanley M. J., Liebersbach B. F., Liu W., Anhalt D. J., Sanderson R. D. Heparan sulfate-mediated cell aggregation. Syndecans-1 and -4 mediate intercellular adhesion following their transfection into human B lymphoid cells. J Biol Chem. 1995 Mar 10;270(10):5077–5083. doi: 10.1074/jbc.270.10.5077. [DOI] [PubMed] [Google Scholar]
  58. Stipp C. S., Litwack E. D., Lander A. D. Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed specifically during neuronal differentiation. J Cell Biol. 1994 Jan;124(1-2):149–160. doi: 10.1083/jcb.124.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vlodavsky I., Miao H. Q., Medalion B., Danagher P., Ron D. Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev. 1996 Jun;15(2):177–186. doi: 10.1007/BF00437470. [DOI] [PubMed] [Google Scholar]
  60. Warshaw A. L., Fernández-del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992 Feb 13;326(7):455–465. doi: 10.1056/NEJM199202133260706. [DOI] [PubMed] [Google Scholar]
  61. Watanabe K., Yamada H., Yamaguchi Y. K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. J Cell Biol. 1995 Sep;130(5):1207–1218. doi: 10.1083/jcb.130.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yamanaka Y., Friess H., Buchler M., Beger H. G., Uchida E., Onda M., Kobrin M. S., Korc M. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res. 1993 Nov 1;53(21):5289–5296. [PubMed] [Google Scholar]
  63. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES