Abstract
We describe a metabolic defect in bile acid synthesis involving a deficiency in 7alpha-hydroxylation due to a mutation in the gene for the microsomal oxysterol 7alpha-hydroxylase enzyme, active in the acidic pathway for bile acid synthesis. The defect, identified in a 10-wk-old boy presenting with severe cholestasis, cirrhosis, and liver synthetic failure, was established by fast atom bombardment ionization-mass spectrometry, which revealed elevated urinary bile acid excretion, a mass spectrum with intense ions at m/z 453 and m/z 510 corresponding to sulfate and glycosulfate conjugates of unsaturated monohydroxy-cholenoic acids, and an absence of primary bile acids. Gas chromatography-mass spectrometric analysis confirmed the major products of hepatic synthesis to be 3beta-hydroxy-5-cholenoic and 3beta-hydroxy-5-cholestenoic acids, which accounted for 96% of the total serum bile acids. Levels of 27-hydroxycholesterol were > 4,500 times normal. The biochemical findings were consistent with a deficiency in 7alpha-hydroxylation, leading to the accumulation of hepatotoxic unsaturated monohydroxy bile acids. Hepatic microsomal oxysterol 7alpha-hydroxylase activity was undetectable in the patient. Gene analysis revealed a cytosine to thymidine transition mutation in exon 5 that converts an arginine codon at position 388 to a stop codon. The truncated protein was inactive when expressed in 293 cells. These findings indicate the quantitative importance of the acidic pathway in early life in humans and define a further inborn error in bile acid synthesis as a metabolic cause of severe cholestatic liver disease.
Full Text
The Full Text of this article is available as a PDF (595.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almé B., Bremmelgaard A., Sjövall J., Thomassen P. Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas-liquid chromatorgaphy-mass spectrometry. J Lipid Res. 1977 May;18(3):339–362. [PubMed] [Google Scholar]
- Axelson M., Larsson O., Zhang J., Shoda J., Sjövall J. Structural specificity in the suppression of HMG-CoA reductase in human fibroblasts by intermediates in bile acid biosynthesis. J Lipid Res. 1995 Feb;36(2):290–298. [PubMed] [Google Scholar]
- Axelson M., Mörk B., Aly A., Wisén O., Sjövall J. Concentrations of cholestenoic acids in plasma from patients with liver disease. J Lipid Res. 1989 Dec;30(12):1877–1882. [PubMed] [Google Scholar]
- Axelson M., Mörk B., Sjövall J. Occurrence of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid as normal constituents in human blood. J Lipid Res. 1988 May;29(5):629–641. [PubMed] [Google Scholar]
- Axelson M., Shoda J., Sjövall J., Toll A., Wikvall K. Cholesterol is converted to 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in liver mitochondria. Evidence for a mitochondrial sterol 7 alpha-hydroxylase. J Biol Chem. 1992 Jan 25;267(3):1701–1704. [PubMed] [Google Scholar]
- Axelson M., Sjövall J. Potential bile acid precursors in plasma--possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem. 1990 Aug 28;36(6):631–640. doi: 10.1016/0022-4731(90)90182-r. [DOI] [PubMed] [Google Scholar]
- BERGSTROM S., DANIELSSON H. On the regulation of bile acid formation in the rat liver. Acta Physiol Scand. 1958 Jul 17;43(1):1–7. doi: 10.1111/j.1748-1716.1958.tb01572.x. [DOI] [PubMed] [Google Scholar]
- Back P., Ross K. Identification of 3 beta-hydroxy-5-cholenoic acid in human meconium. Hoppe Seylers Z Physiol Chem. 1973 Jan;354(1):83–89. doi: 10.1515/bchm2.1973.354.1.83. [DOI] [PubMed] [Google Scholar]
- Clayton P. T., Casteels M., Mieli-Vergani G., Lawson A. M. Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis? Pediatr Res. 1995 Apr;37(4 Pt 1):424–431. doi: 10.1203/00006450-199504000-00007. [DOI] [PubMed] [Google Scholar]
- Clayton P. T., Johnson A. W., Mills K. A., Lynes G. W., Wilson J., Casteels M., Mannaerts G. Ataxia associated with increased plasma concentrations of pristanic acid, phytanic acid and C27 bile acids but normal fibroblast branched-chain fatty acid oxidation. J Inherit Metab Dis. 1996;19(6):761–768. doi: 10.1007/BF01799170. [DOI] [PubMed] [Google Scholar]
- Clayton P. T., Leonard J. V., Lawson A. M., Setchell K. D., Andersson S., Egestad B., Sjövall J. Familial giant cell hepatitis associated with synthesis of 3 beta, 7 alpha-dihydroxy-and 3 beta,7 alpha, 12 alpha-trihydroxy-5-cholenoic acids. J Clin Invest. 1987 Apr;79(4):1031–1038. doi: 10.1172/JCI112915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton R. J., Iber F. L., Ruebner B. H., McKusick V. A. Byler disease. Fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child. 1969 Jan;117(1):112–124. [PubMed] [Google Scholar]
- Cohen J. C., Cali J. J., Jelinek D. F., Mehrabian M., Sparkes R. S., Lusis A. J., Russell D. W., Hobbs H. H. Cloning of the human cholesterol 7 alpha-hydroxylase gene (CYP7) and localization to chromosome 8q11-q12. Genomics. 1992 Sep;14(1):153–161. doi: 10.1016/s0888-7543(05)80298-8. [DOI] [PubMed] [Google Scholar]
- Colombo C., Zuliani G., Ronchi M., Breidenstein J., Setchell K. D. Biliary bile acid composition of the human fetus in early gestation. Pediatr Res. 1987 Feb;21(2):197–200. doi: 10.1203/00006450-198702000-00017. [DOI] [PubMed] [Google Scholar]
- Danielsson H. Influence of dietary bile acids on formation of bile acids in rat. Steroids. 1973 Nov;22(5):667–676. doi: 10.1016/0039-128x(73)90114-1. [DOI] [PubMed] [Google Scholar]
- Daugherty C. C., Setchell K. D., Heubi J. E., Balistreri W. F. Resolution of liver biopsy alterations in three siblings with bile acid treatment of an inborn error of bile acid metabolism (delta 4-3-oxosteroid 5 beta-reductase deficiency). Hepatology. 1993 Nov;18(5):1096–1101. [PubMed] [Google Scholar]
- Dzeletovic S., Breuer O., Lund E., Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995 Feb 10;225(1):73–80. doi: 10.1006/abio.1995.1110. [DOI] [PubMed] [Google Scholar]
- Délèze G., Paumgartner G., Karlaganis G., Giger W., Reinhard M., Sidiropoulos D. Bile acid pattern in human amniotic fluid. Eur J Clin Invest. 1978 Feb;8(1):41–45. doi: 10.1111/j.1365-2362.1978.tb00807.x. [DOI] [PubMed] [Google Scholar]
- Engelking L. R., Barnes S., Hirschowitz B. I., Dasher C. A., Spenney J. G., Naftel D. Determination of the pool size and synthesis rate of bile acids by measurements in blood of patients with liver disease. Clin Sci (Lond) 1980 Jun;58(6):485–492. doi: 10.1042/cs0580485. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. A., Sjövall J. Identification of 22-, 24- and 26-hydroxycholesterol in the steroid sulphage fraction of faeces from infants. Eur J Biochem. 1969 Apr;8(4):467–472. doi: 10.1111/j.1432-1033.1969.tb00550.x. [DOI] [PubMed] [Google Scholar]
- Gustafsson J. Bile acid biosynthesis during development: hydroxylation of C27-sterols in human fetal liver. J Lipid Res. 1986 Aug;27(8):801–806. [PubMed] [Google Scholar]
- Hall R., Kok E., Javitt N. B. Bile acid synthesis: down-regulation by monohydroxy bile acids. FASEB J. 1988 Feb;2(2):152–156. doi: 10.1096/fasebj.2.2.3342968. [DOI] [PubMed] [Google Scholar]
- Harik-Khan R., Holmes R. P. Estimation of 26-hydroxycholesterol in serum by high-performance liquid chromatography and its measurement in patients with atherosclerosis. J Steroid Biochem. 1990 Jul 4;36(4):351–355. doi: 10.1016/0022-4731(90)90228-k. [DOI] [PubMed] [Google Scholar]
- Hasemann C. A., Kurumbail R. G., Boddupalli S. S., Peterson J. A., Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure. 1995 Jan 15;3(1):41–62. doi: 10.1016/s0969-2126(01)00134-4. [DOI] [PubMed] [Google Scholar]
- Hirano Y., Miyazaki H., Higashidate S., Nakayama F. Analysis of 3-sulfated and nonsulfated bile acids by one-step solvolysis and high performance liquid chromatography. J Lipid Res. 1987 Dec;28(12):1524–1529. [PubMed] [Google Scholar]
- Ichimiya H., Nazer H., Gunasekaran T., Clayton P., Sjövall J. Treatment of chronic liver disease caused by 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency with chenodeoxycholic acid. Arch Dis Child. 1990 Oct;65(10):1121–1124. doi: 10.1136/adc.65.10.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Javitt N. B. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J. 1994 Dec;8(15):1308–1311. doi: 10.1096/fasebj.8.15.8001744. [DOI] [PubMed] [Google Scholar]
- Javitt N. B., Emerman S. Effect of sodium taurolithocholate on bile flow and bile acid exeretion. J Clin Invest. 1968 May;47(5):1002–1014. doi: 10.1172/JCI105790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Javitt N. B., Kok E., Burstein S., Cohen B., Kutscher J. 26-Hydroxycholesterol. Identification and quantitation in human serum. J Biol Chem. 1981 Dec 25;256(24):12644–12646. [PubMed] [Google Scholar]
- Javitt N. B., Kok E., Carubbi F., Blizzard T., Gut M., Byon C. Y. Bile acid synthesis. Metabolism of 3 beta-hydroxy-5-cholenoic acid to chenodeoxycholic acid. J Biol Chem. 1986 Sep 25;261(27):12486–12489. [PubMed] [Google Scholar]
- Koopman B. J., van der Molen J. C., Wolthers B. G., Vanderpas J. B. Determination of some hydroxycholesterols in human serum samples. J Chromatogr. 1987 Apr 24;416(1):1–13. doi: 10.1016/0378-4347(87)80479-6. [DOI] [PubMed] [Google Scholar]
- Lee C., Martin K. O., Javitt N. B. Bile acid synthesis: 7 alpha-hydroxylation of intermediates in the sterol 27-hydroxylase metabolic pathway. J Lipid Res. 1996 Jun;37(6):1356–1362. [PubMed] [Google Scholar]
- Lund E., Björkhem I., Furster C., Wikvall K. 24-, 25- and 27-hydroxylation of cholesterol by a purified preparation of 27-hydroxylase from pig liver. Biochim Biophys Acta. 1993 Feb 24;1166(2-3):177–182. doi: 10.1016/0005-2760(93)90094-p. [DOI] [PubMed] [Google Scholar]
- Maggiore G., Bernard O., Riely C. A., Hadchouel M., Lemonnier A., Alagille D. Normal serum gamma-glutamyl-transpeptidase activity identifies groups of infants with idiopathic cholestasis with poor prognosis. J Pediatr. 1987 Aug;111(2):251–252. doi: 10.1016/s0022-3476(87)80079-3. [DOI] [PubMed] [Google Scholar]
- Makino I., Sjövall J., Norman A., Strandvik B. Excretion of 3beta-hydroxy-5-cholenoic and 3a-hydroxy-5a-cholanoic acids in urine of infants with biliary atresia. FEBS Lett. 1971 Jun 10;15(2):161–164. doi: 10.1016/0014-5793(71)80047-9. [DOI] [PubMed] [Google Scholar]
- Martin K. O., Budai K., Javitt N. B. Cholesterol and 27-hydroxycholesterol 7 alpha-hydroxylation: evidence for two different enzymes. J Lipid Res. 1993 Apr;34(4):581–588. [PubMed] [Google Scholar]
- Martin K. O., Reiss A. B., Lathe R., Javitt N. B. 7 alpha-hydroxylation of 27-hydroxycholesterol: biologic role in the regulation of cholesterol synthesis. J Lipid Res. 1997 May;38(5):1053–1058. [PubMed] [Google Scholar]
- Mathis U., Karlaganis G., Preisig R. Monohydroxy bile salt sulfates: tauro-3 beta-hydroxy-5-cholenoate-3-sulfate induces intrahepatic cholestasis in rats. Gastroenterology. 1983 Sep;85(3):674–681. [PubMed] [Google Scholar]
- McCormick W. C., 3rd, Bell C. C., Jr, Swell L., Vlahcevic Z. R. Cholic acid synthesis as an index of the severity of liver disease in man. Gut. 1973 Nov;14(11):895–902. doi: 10.1136/gut.14.11.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myant N. B., Mitropoulos K. A. Cholesterol 7 alpha-hydroxylase. J Lipid Res. 1977 Mar;18(2):135–153. [PubMed] [Google Scholar]
- Nair P. P., Garcia C. A modified gas-liquid chromatographic procedure for the rapid determination of bile acids in biological fluids. Anal Biochem. 1969 Apr 11;29(1):164–166. doi: 10.1016/0003-2697(69)90020-7. [DOI] [PubMed] [Google Scholar]
- Nakagawa M., Setchell K. D. Bile acid metabolism in early life: studies of amniotic fluid. J Lipid Res. 1990 Jun;31(6):1089–1098. [PubMed] [Google Scholar]
- Parmentier G. G., Janssen G. A., Eggermont E. A., Eyssen H. J. C27 bile acids in infants with coprostanic acidemia and occurrence of a 3 alpha,7 alpha,12 alpha-tridhydroxy-5 beta-C29 dicarboxylic bile acid as a major component in their serum. Eur J Biochem. 1979 Dec;102(1):173–183. doi: 10.1111/j.1432-1033.1979.tb06278.x. [DOI] [PubMed] [Google Scholar]
- Reiss A. B., Martin K. O., Rojer D. E., Iyer S., Grossi E. A., Galloway A. C., Javitt N. B. Sterol 27-hydroxylase: expression in human arterial endothelium. J Lipid Res. 1997 Jun;38(6):1254–1260. [PubMed] [Google Scholar]
- Rodrigues C. M., Setchell K. D. Performance characteristics of reversed-phase bonded silica cartridges for serum bile acid extraction. Biomed Chromatogr. 1996 Jan-Feb;10(1):1–5. doi: 10.1002/(SICI)1099-0801(199601)10:1<1::AID-BMC536>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Russell D. W., Setchell K. D. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. doi: 10.1021/bi00135a001. [DOI] [PubMed] [Google Scholar]
- Schwarz M., Lund E. G., Lathe R., Björkhem I., Russell D. W. Identification and characterization of a mouse oxysterol 7alpha-hydroxylase cDNA. J Biol Chem. 1997 Sep 19;272(38):23995–24001. doi: 10.1074/jbc.272.38.23995. [DOI] [PubMed] [Google Scholar]
- Schwarz M., Lund E. G., Setchell K. D., Kayden H. J., Zerwekh J. E., Björkhem I., Herz J., Russell D. W. Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J Biol Chem. 1996 Jul 26;271(30):18024–18031. doi: 10.1074/jbc.271.30.18024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setchell K. D., Bragetti P., Zimmer-Nechemias L., Daugherty C., Pelli M. A., Vaccaro R., Gentili G., Distrutti E., Dozzini G., Morelli A. Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology. 1992 Feb;15(2):198–207. doi: 10.1002/hep.1840150206. [DOI] [PubMed] [Google Scholar]
- Setchell K. D., Dumaswala R., Colombo C., Ronchi M. Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J Biol Chem. 1988 Nov 15;263(32):16637–16644. [PubMed] [Google Scholar]
- Setchell K. D., Lawson A. M., Tanida N., Sjövall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983 Aug;24(8):1085–1100. [PubMed] [Google Scholar]
- Setchell K. D., Matsui A. Serum bile acid analysis. Clin Chim Acta. 1983 Jan 7;127(1):1–17. doi: 10.1016/0009-8981(83)90070-0. [DOI] [PubMed] [Google Scholar]
- Setchell K. D., Rodrigues C. M., Clerici C., Solinas A., Morelli A., Gartung C., Boyer J. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology. 1997 Jan;112(1):226–235. doi: 10.1016/s0016-5085(97)70239-7. [DOI] [PubMed] [Google Scholar]
- Setchell K. D., Street J. M. Inborn errors of bile acid synthesis. Semin Liver Dis. 1987 May;7(2):85–99. doi: 10.1055/s-2008-1040568. [DOI] [PubMed] [Google Scholar]
- Setchell K. D., Suchy F. J., Welsh M. B., Zimmer-Nechemias L., Heubi J., Balistreri W. F. Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest. 1988 Dec;82(6):2148–2157. doi: 10.1172/JCI113837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setchell K. D., Worthington J. A rapid method for the quantitative extraction of bile acids and their conjugates from serum using commercially available reverse-phase octadecylsilane bonded silica cartridges. Clin Chim Acta. 1982 Oct 27;125(2):135–144. doi: 10.1016/0009-8981(82)90190-5. [DOI] [PubMed] [Google Scholar]
- Setoguchi T., Salen G., Tint G. S., Mosbach E. H. A biochemical abnormality in cerebrotendinous xanthomatosis. Impairment of bile acid biosynthesis associated with incomplete degradation of the cholesterol side chain. J Clin Invest. 1974 May;53(5):1393–1401. doi: 10.1172/JCI107688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoda J., Toll A., Axelson M., Pieper F., Wikvall K., Sjövall J. Formation of 7 alpha- and 7 beta-hydroxylated bile acid precursors from 27-hydroxycholesterol in human liver microsomes and mitochondria. Hepatology. 1993 Mar;17(3):395–403. [PubMed] [Google Scholar]
- Sokol R. J., Devereaux M., Khandwala R., O'Brien K. Evidence for involvement of oxygen free radicals in bile acid toxicity to isolated rat hepatocytes. Hepatology. 1993 May;17(5):869–881. [PubMed] [Google Scholar]
- Stapleton G., Steel M., Richardson M., Mason J. O., Rose K. A., Morris R. G., Lathe R. A novel cytochrome P450 expressed primarily in brain. J Biol Chem. 1995 Dec 15;270(50):29739–29745. doi: 10.1074/jbc.270.50.29739. [DOI] [PubMed] [Google Scholar]
- Stieger B., Zhang J., O'Neill B., Sjövall J., Meier P. J. Differential interaction of bile acids from patients with inborn errors of bile acid synthesis with hepatocellular bile acid transporters. Eur J Biochem. 1997 Feb 15;244(1):39–44. doi: 10.1111/j.1432-1033.1997.00039.x. [DOI] [PubMed] [Google Scholar]
- Stiehl A., Earnest D. L., Admirant W. H. Sulfation and renal excretion of bile salts in patients with cirrhosis of the liver. Gastroenterology. 1975 Mar;68(3):534–544. [PubMed] [Google Scholar]
- Takikawa H., Otsuka H., Beppu T., Seyama Y. Determination of 3 beta-hydroxy-5-cholenoic acid in serum of hepatobiliary diseases--its glucuronidated and sulfated conjugates. Biochem Med. 1985 Jun;33(3):393–400. doi: 10.1016/0006-2944(85)90016-x. [DOI] [PubMed] [Google Scholar]
- Toll A., Shoda J., Axelson M., Sjövall J., Wikvall K. 7 alpha-hydroxylation of 26-hydroxycholesterol, 3 beta-hydroxy-5-cholestenoic acid and 3 beta-hydroxy-5-cholenoic acid by cytochrome P-450 in pig liver microsomes. FEBS Lett. 1992 Jan 13;296(1):73–76. doi: 10.1016/0014-5793(92)80406-7. [DOI] [PubMed] [Google Scholar]
- Vlahcevic Z. R., Juttijudata P., Bell C. C., Jr, Swell L. Bile acid metabolism in patients with cirrhosis. II. Cholic and chenodeoxycholic acid metabolism. Gastroenterology. 1972 Jun;62(6):1174–1181. [PubMed] [Google Scholar]
- Whitington P. F., Freese D. K., Alonso E. M., Schwarzenberg S. J., Sharp H. L. Clinical and biochemical findings in progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. 1994 Feb;18(2):134–141. doi: 10.1097/00005176-199402000-00003. [DOI] [PubMed] [Google Scholar]
- Witzleben C. L., Piccoli D. A., Setchell K. A new category of causes of intrahepatic cholestasis. Pediatr Pathol. 1992 Mar-Apr;12(2):269–274. doi: 10.3109/15513819209023305. [DOI] [PubMed] [Google Scholar]
- Zhang J., Akwa Y., Baulieu E. E., Sjövall J. 7 Alpha-hydroxylation of 27-hydroxycholesterol in rat brain microsomes. C R Acad Sci III. 1995 Mar;318(3):345–349. [PubMed] [Google Scholar]
- Zhang J., Dricu A., Sjövall J. Studies on the relationships between 7 alpha-hydroxylation and the ability of 25- and 27-hydroxycholesterol to suppress the activity of HMG-CoA reductase. Biochim Biophys Acta. 1997 Feb 18;1344(3):241–249. doi: 10.1016/s0005-2760(96)00148-8. [DOI] [PubMed] [Google Scholar]
- Zhang J., Larsson O., Sjövall J. 7 alpha-Hydroxylation of 25-hydroxycholesterol and 27-hydroxycholesterol in human fibroblasts. Biochim Biophys Acta. 1995 Jun 6;1256(3):353–359. doi: 10.1016/0005-2760(95)00045-e. [DOI] [PubMed] [Google Scholar]
- van Doormaal J. J., Smit N., Koopman B. J., van der Molen J. C., Wolthers B. G., Doorenbos H. Hydroxycholesterols in serum from hypercholesterolaemic patients with and without bile acid sequestrant therapy. Clin Chim Acta. 1989 May 31;181(3):273–279. doi: 10.1016/0009-8981(89)90233-7. [DOI] [PubMed] [Google Scholar]