Abstract
An important interplay exists between specific viral respiratory infections and altered airway responsiveness in the development and exacerbations of asthma. However, the mechanistic basis of this interplay remains to be identified. This study addressed the hypothesis that rhinovirus (RV), the most common viral respiratory pathogen associated with acute asthma attacks, directly affects airway smooth muscle (ASM) to produce proasthmatic changes in receptor-coupled ASM responsiveness. Isolated rabbit and human ASM tissue and cultured ASM cells were inoculated with human RV (serotype 16) or adenovirus, each for 6 or 24 h. In contrast to adenovirus, which had no effect, inoculation of ASM tissue with RV induced heightened ASM tissue constrictor responsiveness to acetylcholine and attenuated the dose-dependent relaxation of ASM to beta-adrenoceptor stimulation with isoproterenol. These RV-induced changes in ASM responsiveness were largely prevented by pretreating the tissues with pertussis toxin or with a monoclonal blocking antibody to intercellular adhesion molecule-1 (ICAM-1), the principal endogenous receptor for most RVs. In extended studies, we found that the RV-induced changes in ASM responsiveness were associated with diminished cAMP accumulation in response to dose-dependent administration of isoproterenol, and this effect was accompanied by autologously upregulated expression of the Gi protein subtype, Gialpha3, in the ASM. Finally, in separate experiments, we found that the RV-induced effects on ASM responsiveness were also accompanied by autologously induced upregulated mRNA and cell surface protein expression of ICAM-1. Taken together, these findings provide new evidence that RV directly induces proasthmatic phenotypic changes in ASM responsiveness, that this effect is triggered by binding of RV to its ICAM-1 receptor in ASM, and that this binding is associated with the induced endogenously upregulated expression of ICAM-1 and enhanced expression and activation of Gi protein in the RV-infected ASM.
Full Text
The Full Text of this article is available as a PDF (390.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahna S. L., Horwitz C. A., Fiala M., Heiner D. C. IgE response in heterophil-positive infectious mononucleosis. J Allergy Clin Immunol. 1978 Sep;62(3):167–173. doi: 10.1016/0091-6749(78)90102-1. [DOI] [PubMed] [Google Scholar]
- Bardin P. G., Johnston S. L., Pattemore P. K. Viruses as precipitants of asthma symptoms. II. Physiology and mechanisms. Clin Exp Allergy. 1992 Sep;22(9):809–822. doi: 10.1111/j.1365-2222.1992.tb02825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley A. M., Durham S. R., Robinson D. S., Menz G., Storz C., Cromwell O., Kay A. B., Wardlaw A. J. Expression of endothelial and leukocyte adhesion molecules interacellular adhesion molecule-1, E-selectin, and vascular cell adhesion molecule-1 in the bronchial mucosa in steady-state and allergen-induced asthma. J Allergy Clin Immunol. 1993 Dec;92(6):857–868. doi: 10.1016/0091-6749(93)90064-m. [DOI] [PubMed] [Google Scholar]
- Björnsdottir U. S., Busse W. W. Respiratory infections and asthma. Med Clin North Am. 1992 Jul;76(4):895–915. doi: 10.1016/s0025-7125(16)30331-5. [DOI] [PubMed] [Google Scholar]
- Blair H. T., Greenberg S. B., Stevens P. M., Bilunos P. A., Couch R. B. Effects of rhinovirus infection of pulmonary function of healthy human volunteers. Am Rev Respir Dis. 1976 Jul;114(1):95–102. doi: 10.1164/arrd.1976.114.1.95. [DOI] [PubMed] [Google Scholar]
- Buckner C. K., Clayton D. E., Ain-Shoka A. A., Busse W. W., Dick E. C., Shult P. Parainfluenza 3 infection blocks the ability of a beta adrenergic receptor agonist to inhibit antigen-induced contraction of guinea pig isolated airway smooth muscle. J Clin Invest. 1981 Feb;67(2):376–384. doi: 10.1172/JCI110045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckner C. K., Songsiridej V., Dick E. C., Busse W. W. In vivo and in vitro studies on the use of the guinea pig as a model for virus-provoked airway hyperreactivity. Am Rev Respir Dis. 1985 Aug;132(2):305–310. doi: 10.1164/arrd.1985.132.2.305. [DOI] [PubMed] [Google Scholar]
- Busse W. W. Respiratory infections: their role in airway responsiveness and the pathogenesis of asthma. J Allergy Clin Immunol. 1990 Apr;85(4):671–683. doi: 10.1016/0091-6749(90)90181-3. [DOI] [PubMed] [Google Scholar]
- Busse W. W. The relationship between viral infections and onset of allergic diseases and asthma. Clin Exp Allergy. 1989 Jan;19(1):1–9. doi: 10.1111/j.1365-2222.1989.tb02336.x. [DOI] [PubMed] [Google Scholar]
- Carlson K. E., Brass L. F., Manning D. R. Thrombin and phorbol esters cause the selective phosphorylation of a G protein other than Gi in human platelets. J Biol Chem. 1989 Aug 5;264(22):13298–13305. [PubMed] [Google Scholar]
- Chin J. E., Winterrowd G. E., Hatfield C. A., Brashler J. R., Griffin R. L., Vonderfecht S. L., Kolbasa K. P., Fidler S. F., Shull K. L., Krzesicki R. F. Involvement of intercellular adhesion molecule-1 in the antigen-induced infiltration of eosinophils and lymphocytes into the airways in a murine model of pulmonary inflammation. Am J Respir Cell Mol Biol. 1998 Feb;18(2):158–167. doi: 10.1165/ajrcmb.18.2.2565m. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Doyle W. J., Skoner D. P., Fireman P., Seroky J. T., Green I., Ruben F., Kardatzke D. R., Gwaltney J. M. Rhinovirus 39 infection in allergic and nonallergic subjects. J Allergy Clin Immunol. 1992 May;89(5):968–978. doi: 10.1016/0091-6749(92)90219-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle W. J., Skoner D. P., Seroky J. T., Fireman P., Gwaltney J. M. Effect of experimental rhinovirus 39 infection on the nasal response to histamine and cold air challenges in allergic and nonallergic subjects. J Allergy Clin Immunol. 1994 Feb;93(2):534–542. doi: 10.1016/0091-6749(94)90364-6. [DOI] [PubMed] [Google Scholar]
- Folkerts G., Nijkamp F. P. Virus-induced airway hyperresponsiveness. Role of inflammatory cells and mediators. Am J Respir Crit Care Med. 1995 May;151(5):1666–1674. doi: 10.1164/ajrccm.151.5.7735631. [DOI] [PubMed] [Google Scholar]
- Fraenkel D. J., Bardin P. G., Sanderson G., Lampe F., Johnston S. L., Holgate S. T. Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 1):879–886. doi: 10.1164/ajrccm/151.3_Pt_1.879. [DOI] [PubMed] [Google Scholar]
- Gern J. E., Busse W. W. The effects of rhinovirus infections on allergic airway responses. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 2):S40–S45. doi: 10.1164/ajrccm/152.4_Pt_2.S40. [DOI] [PubMed] [Google Scholar]
- Goldie R. G., Spina D., Henry P. J., Lulich K. M., Paterson J. W. In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, beta-adrenoceptor agonists and theophylline. Br J Clin Pharmacol. 1986 Dec;22(6):669–676. doi: 10.1111/j.1365-2125.1986.tb02956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldie R. G., Spina D., Henry P. J., Lulich K. M., Paterson J. W. In vitro responsiveness of human asthmatic bronchus to carbachol, histamine, beta-adrenoceptor agonists and theophylline. Br J Clin Pharmacol. 1986 Dec;22(6):669–676. doi: 10.1111/j.1365-2125.1986.tb02956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gosset P., Tillie-Leblond I., Janin A., Marquette C. H., Copin M. C., Wallaert B., Tonnel A. B. Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int Arch Allergy Immunol. 1995 Jan;106(1):69–77. doi: 10.1159/000236892. [DOI] [PubMed] [Google Scholar]
- Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989 Mar 10;56(5):839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
- Griffin D. E., Cooper S. J., Hirsch R. L., Johnson R. T., Lindo de Soriano I., Roedenbeck S., Vaisberg A. Changes in plasma IgE levels during complicated and uncomplicated measles virus infections. J Allergy Clin Immunol. 1985 Aug;76(2 Pt 1):206–213. doi: 10.1016/0091-6749(85)90703-1. [DOI] [PubMed] [Google Scholar]
- Grunstein M. M., Chuang S. T., Schramm C. M., Pawlowski N. A. Role of endothelin 1 in regulating rabbit airway contractility. Am J Physiol. 1991 Feb;260(2 Pt 1):L75–L82. doi: 10.1152/ajplung.1991.260.2.L75. [DOI] [PubMed] [Google Scholar]
- Gundel R. H., Wegner C. D., Torcellini C. A., Letts L. G. The role of intercellular adhesion molecule-1 in chronic airway inflammation. Clin Exp Allergy. 1992 May;22(5):569–575. doi: 10.1111/j.1365-2222.1992.tb00167.x. [DOI] [PubMed] [Google Scholar]
- Hakonarson H., Herrick D. J., Grunstein M. M. Mechanism of impaired beta-adrenoceptor responsiveness in atopic sensitized airway smooth muscle. Am J Physiol. 1995 Nov;269(5 Pt 1):L645–L652. doi: 10.1152/ajplung.1995.269.5.L645. [DOI] [PubMed] [Google Scholar]
- Hakonarson H., Herrick D. J., Serrano P. G., Grunstein M. M. Autocrine role of interleukin 1beta in altered responsiveness of atopic asthmatic sensitized airway smooth muscle. J Clin Invest. 1997 Jan 1;99(1):117–124. doi: 10.1172/JCI119122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hakonarson H., Herrick D. J., Serrano P. G., Grunstein M. M. Mechanism of cytokine-induced modulation of beta-adrenoceptor responsiveness in airway smooth muscle. J Clin Invest. 1996 Jun 1;97(11):2593–2600. doi: 10.1172/JCI118708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue H., Horio S., Ichinose M., Ida S., Hida W., Takishima T., Ohwada K., Homma M. Changes in bronchial reactivity to acetylcholine with type C influenza virus infection in dogs. Am Rev Respir Dis. 1986 Mar;133(3):367–371. doi: 10.1164/arrd.1986.133.3.367. [DOI] [PubMed] [Google Scholar]
- Kelly L. J., Undem B. J., Adams G. K., 3rd Antigen-induced contraction of guinea pig isolated pulmonary arteries and lung parenchyma. J Appl Physiol (1985) 1993 Apr;74(4):1563–1569. doi: 10.1152/jappl.1993.74.4.1563. [DOI] [PubMed] [Google Scholar]
- Lazaar A. L., Reitz H. E., Panettieri R. A., Jr, Peters S. P., Puré E. Antigen receptor-stimulated peripheral blood and bronchoalveolar lavage-derived T cells induce MHC class II and ICAM-1 expression on human airway smooth muscle. Am J Respir Cell Mol Biol. 1997 Jan;16(1):38–45. doi: 10.1165/ajrcmb.16.1.8998077. [DOI] [PubMed] [Google Scholar]
- Lemanske R. F., Jr, Dick E. C., Swenson C. A., Vrtis R. F., Busse W. W. Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. J Clin Invest. 1989 Jan;83(1):1–10. doi: 10.1172/JCI113843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manolitsas N. D., Trigg C. J., McAulay A. E., Wang J. H., Jordan S. E., D'Ardenne A. J., Davies R. J. The expression of intercellular adhesion molecule-1 and the beta 1-integrins in asthma. Eur Respir J. 1994 Aug;7(8):1439–1444. doi: 10.1183/09031936.94.07081439. [DOI] [PubMed] [Google Scholar]
- Martinez F. D., Wright A. L., Taussig L. M., Holberg C. J., Halonen M., Morgan W. J. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995 Jan 19;332(3):133–138. doi: 10.1056/NEJM199501193320301. [DOI] [PubMed] [Google Scholar]
- Noah T. L., Becker S. Respiratory syncytial virus-induced cytokine production by a human bronchial epithelial cell line. Am J Physiol. 1993 Nov;265(5 Pt 1):L472–L478. doi: 10.1152/ajplung.1993.265.5.L472. [DOI] [PubMed] [Google Scholar]
- Noveral J. P., Grunstein M. M. Role and mechanism of thromboxane-induced proliferation of cultured airway smooth muscle cells. Am J Physiol. 1992 Nov;263(5 Pt 1):L555–L561. doi: 10.1152/ajplung.1992.263.5.L555. [DOI] [PubMed] [Google Scholar]
- Patel J. A., Kunimoto M., Sim T. C., Garofalo R., Eliott T., Baron S., Ruuskanen O., Chonmaitree T., Ogra P. L., Schmalstieg F. Interleukin-1 alpha mediates the enhanced expression of intercellular adhesion molecule-1 in pulmonary epithelial cells infected with respiratory syncytial virus. Am J Respir Cell Mol Biol. 1995 Nov;13(5):602–609. doi: 10.1165/ajrcmb.13.5.7576697. [DOI] [PubMed] [Google Scholar]
- Popa V., Douglas J. S., Bouhuys A. Airway responses to histamine, acetylcholine, and propranolol in anaphylactic hypersensitivity in guinea pigs. J Allergy Clin Immunol. 1973 Jun;51(6):344–356. doi: 10.1016/0091-6749(73)90073-0. [DOI] [PubMed] [Google Scholar]
- Pyszniak A. M., Carpenito C., Takei F. The role of LFA-1 (CD11a/CD18) cytoplasmic domains in binding to intercellular adhesion molecule-1 (CD54) and in postreceptor cell spreading. Exp Cell Res. 1997 May 25;233(1):78–87. doi: 10.1006/excr.1997.3547. [DOI] [PubMed] [Google Scholar]
- Saban R., Dick E. C., Fishleder R. I., Buckner C. K. Enhancement by parainfluenza 3 infection of contractile responses to substance P and capsaicin in airway smooth muscle from the guinea pig. Am Rev Respir Dis. 1987 Sep;136(3):586–591. doi: 10.1164/ajrccm/136.3.586. [DOI] [PubMed] [Google Scholar]
- Simmons D., Makgoba M. W., Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature. 1988 Feb 18;331(6157):624–627. doi: 10.1038/331624a0. [DOI] [PubMed] [Google Scholar]
- Skoner D. P., Whiteside T. L., Wilson J. W., Doyle W. J., Herberman R. B., Fireman P. Effect of rhinovirus 39 infection on cellular immune parameters in allergic and nonallergic subjects. J Allergy Clin Immunol. 1993 Nov;92(5):732–743. doi: 10.1016/0091-6749(93)90017-a. [DOI] [PubMed] [Google Scholar]
- Smith H. Animal models of asthma. Pulm Pharmacol. 1989;2(2):59–74. doi: 10.1016/0952-0600(89)90026-4. [DOI] [PubMed] [Google Scholar]
- Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
- Staunton D. E., Marlin S. D., Stratowa C., Dustin M. L., Springer T. A. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988 Mar 25;52(6):925–933. doi: 10.1016/0092-8674(88)90434-5. [DOI] [PubMed] [Google Scholar]
- Subauste M. C., Jacoby D. B., Richards S. M., Proud D. Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest. 1995 Jul;96(1):549–557. doi: 10.1172/JCI118067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J., Elwood W., Haczku A., Barnes P. J., Hellewell P. G., Chung K. F. Contribution of intercellular-adhesion molecule-1 in allergen-induced airway hyperresponsiveness and inflammation in sensitised brown-Norway rats. Int Arch Allergy Immunol. 1994 Jul;104(3):291–295. doi: 10.1159/000236679. [DOI] [PubMed] [Google Scholar]
- Tosi M. F., Stark J. M., Hamedani A., Smith C. W., Gruenert D. C., Huang Y. T. Intercellular adhesion molecule-1 (ICAM-1)-dependent and ICAM-1-independent adhesive interactions between polymorphonuclear leukocytes and human airway epithelial cells infected with parainfluenza virus type 2. J Immunol. 1992 Nov 15;149(10):3345–3349. [PubMed] [Google Scholar]
- Uncapher C. R., DeWitt C. M., Colonno R. J. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology. 1991 Feb;180(2):814–817. doi: 10.1016/0042-6822(91)90098-v. [DOI] [PubMed] [Google Scholar]
- Wanner A. Utility of animal models in the study of human airway disease. Chest. 1990 Jul;98(1):211–217. doi: 10.1378/chest.98.1.211. [DOI] [PubMed] [Google Scholar]
- Wegner C. D., Gundel R. H., Reilly P., Haynes N., Letts L. G., Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science. 1990 Jan 26;247(4941):456–459. doi: 10.1126/science.1967851. [DOI] [PubMed] [Google Scholar]
- Wills-Karp M., Gilmour M. I. Increased cholinergic antagonism underlies impaired beta-adrenergic response in ovalbumin-sensitized guinea pigs. J Appl Physiol (1985) 1993 Jun;74(6):2729–2735. doi: 10.1152/jappl.1993.74.6.2729. [DOI] [PubMed] [Google Scholar]