Abstract
Cholestasis is associated with hypercholesterolemia and appearance of the abnormal lipoprotein X (LpX) in plasma. Using mice with a disrupted Mdr2 gene, we tested the hypothesis that LpX originates as a biliary lipid vesicle. Mdr2-deficient mice lack Mdr2 P-glycoprotein, the canalicular translocator for phosphatidylcholine, and secrete virtually no phospholipid and cholesterol in bile. Bile duct ligation of Mdr2(+)/+ mice induced a dramatic increase in the plasma cholesterol and phospholipid concentration. Agarose electrophoresis, density gradient ultracentrifugation, gel permeation, and electron microscopy revealed that the majority of phospholipid and cholesterol was present as LpX, a 40-100 nm vesicle with an aqueous lumen. In contrast, the plasma cholesterol and phospholipid concentration in Mdr2(-)/- mice decreased upon bile duct ligation, and plasma fractionation revealed a complete absence of LpX. In mice with various expression levels of Mdr2 or MDR3, the human homolog of Mdr2, we observed that the plasma level of cholesterol and phospholipid during cholestasis correlated very closely with the expression level of these canalicular P-glycoproteins. These data demonstrate that during cholestasis there is a quantitative shift of lipid secretion from bile to the plasma compartment in the form of LpX. The concentration of this lipoprotein is determined by the activity of the canalicular phospholipid translocator.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AHRENS E. H., Jr, KUNKEL H. G. The relationship between serum lipids and skin xanthomata in 18 patients with primary biliary cirrhosis. J Clin Invest. 1949 Nov;28(6 Pt 2):1565–1574. doi: 10.1172/JCI102222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Accatino L., Pizarro M., Solís N., Koenig C. S., Vollrath V., Chianale J. Modulation of hepatic content and biliary excretion of P-glycoproteins in hepatocellular and obstructive cholestasis in the rat. J Hepatol. 1996 Sep;25(3):349–361. doi: 10.1016/s0168-8278(96)80122-x. [DOI] [PubMed] [Google Scholar]
- Barr V. A., Hubbard A. L. Newly synthesized hepatocyte plasma membrane proteins are transported in transcytotic vesicles in the bile duct-ligated rat. Gastroenterology. 1993 Aug;105(2):554–571. doi: 10.1016/0016-5085(93)90734-t. [DOI] [PubMed] [Google Scholar]
- Chapman M. J., Goldstein S., Lagrange D., Laplaud P. M. A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J Lipid Res. 1981 Feb;22(2):339–358. [PubMed] [Google Scholar]
- Chisholm J. W., Dolphin P. J. Abnormal lipoproteins in the ANIT-treated rat: a transient and reversible animal model of intrahepatic cholestasis. J Lipid Res. 1996 May;37(5):1086–1098. [PubMed] [Google Scholar]
- Crawford A. R., Smith A. J., Hatch V. C., Oude Elferink R. P., Borst P., Crawford J. M. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J Clin Invest. 1997 Nov 15;100(10):2562–2567. doi: 10.1172/JCI119799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford J. M., Möckel G. M., Crawford A. R., Hagen S. J., Hatch V. C., Barnes S., Godleski J. J., Carey M. C. Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res. 1995 Oct;36(10):2147–2163. [PubMed] [Google Scholar]
- Edwards C. M., Otal M. P., Stacpoole P. W. Lipoprotein-X fails to inhibit hydroxymethylglutaryl coenzyme A reductase in HepG2 cells. Metabolism. 1993 Jul;42(7):807–813. doi: 10.1016/0026-0495(93)90051-o. [DOI] [PubMed] [Google Scholar]
- Elferink R. P., Tytgat G. N., Groen A. K. Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J. 1997 Jan;11(1):19–28. doi: 10.1096/fasebj.11.1.9034162. [DOI] [PubMed] [Google Scholar]
- Felker T. E., Hamilton R. L., Havel R. J. Secretion of lipoprotein-X by perfused livers of rats with cholestasis. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3459–3463. doi: 10.1073/pnas.75.7.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guérin M., Dolphin P. J., Chapman M. J. Familial lecithin:cholesterol acyltransferase deficiency: further resolution of lipoprotein particle heterogeneity in the low density interval. Atherosclerosis. 1993 Dec;104(1-2):195–212. doi: 10.1016/0021-9150(93)90191-v. [DOI] [PubMed] [Google Scholar]
- Hamilton R. L., Havel R. J., Kane J. P., Blaurock A. E., Sata T. Cholestasis: lamellar structure of the abnormal human serum lipoprotein. Science. 1971 Apr 30;172(3982):475–478. doi: 10.1126/science.172.3982.475. [DOI] [PubMed] [Google Scholar]
- Harry D. S., Dini M., McIntyre N. Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat. Biochim Biophys Acta. 1973 Jan 19;296(1):209–220. doi: 10.1016/0005-2760(73)90061-1. [DOI] [PubMed] [Google Scholar]
- Huang H., Kauan J. W., Guilbault G. G. Fluorometric enzymatic determination of total cholesterol in serum. Clin Chem. 1975 Oct;21(11):1605–1608. [PubMed] [Google Scholar]
- Juranka P. F., Zastawny R. L., Ling V. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J. 1989 Dec;3(14):2583–2592. doi: 10.1096/fasebj.3.14.2574119. [DOI] [PubMed] [Google Scholar]
- KUNKEL H. G., AHRENS E. H., Jr The relationship between serum lipids and the electrophoretic pattern, with particular reference to patients with primary biliary cirrhosis. J Clin Invest. 1949 Nov;28(6 Pt 2):1575–1579. doi: 10.1172/JCI102223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kattermann R., Creutzfeldt W. The effect of experimental cholestasis on the negative feedback regulation of cholesterol synthesis in rat liver. Scand J Gastroenterol. 1970;5(5):337–342. [PubMed] [Google Scholar]
- Laggner P., Glatter O., Müller K., Kratky O., Kostner G., Holasek A. The lipid bilayer structure of the abnormal human plasma lipoprotein X. An X-ray small-angle-scattering study. Eur J Biochem. 1977 Jul 1;77(1):165–171. doi: 10.1111/j.1432-1033.1977.tb11654.x. [DOI] [PubMed] [Google Scholar]
- Liersch M., Baggio G., Heuck C. C., Seidel Effect of lipoprotein-X on hepatic cholesterol synthesis. Atherosclerosis. 1977 Apr;26(4):505–514. doi: 10.1016/0021-9150(77)90118-6. [DOI] [PubMed] [Google Scholar]
- Manzato E., Fellin R., Baggio G., Walch S., Neubeck W., Seidel D. Formation of lipoprotein-X. Its relationship to bile compounds. J Clin Invest. 1976 May;57(5):1248–1260. doi: 10.1172/JCI108393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntyre N., Harry D. S., Pearson A. J. The hypercholesterolaemia of obstructive jaundice. Gut. 1975 May;16(5):379–391. doi: 10.1136/gut.16.5.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O K., Frohlich J. Role of lecithin:cholesterol acyltransferase and apolipoprotein A-I in cholesterol esterification in lipoprotein-X in vitro. J Lipid Res. 1995 Nov;36(11):2344–2354. [PubMed] [Google Scholar]
- Oude Elferink R. P., Ottenhoff R., van Wijland M., Smit J. J., Schinkel A. H., Groen A. K. Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest. 1995 Jan;95(1):31–38. doi: 10.1172/JCI117658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picard J., Veissiere D., Voyer F., Bereziat G. Composition en acids gras des phospholipdes dans les lipoproteines seriques anormales de la cholostase. Clin Chim Acta. 1972 Jan;36(1):247–250. doi: 10.1016/0009-8981(72)90184-2. [DOI] [PubMed] [Google Scholar]
- Sabesin S. M. Cholestatic lipoproteins--their pathogenesis and significance. Gastroenterology. 1982 Sep;83(3):704–709. [PubMed] [Google Scholar]
- Seidel D., Alaupovic P., Furman R. H. A lipoprotein characterizing obstructive jaundice. I. Method for quantitative separation and identification of lipoproteins in jaundiced subjects. J Clin Invest. 1969 Jul;48(7):1211–1223. doi: 10.1172/JCI106085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smit J. J., Schinkel A. H., Mol C. A., Majoor D., Mooi W. J., Jongsma A. P., Lincke C. R., Borst P. Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest. 1994 Nov;71(5):638–649. [PubMed] [Google Scholar]
- Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
- Smith A. J., de Vree J. M., Ottenhoff R., Oude Elferink R. P., Schinkel A. H., Borst P. Hepatocyte-specific expression of the human MDR3 P-glycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (-/-) mice. Hepatology. 1998 Aug;28(2):530–536. doi: 10.1002/hep.510280234. [DOI] [PubMed] [Google Scholar]
- Stieger B., Meier P. J., Landmann L. Effect of obstructive cholestasis on membrane traffic and domain-specific expression of plasma membrane proteins in rat liver parenchymal cells. Hepatology. 1994 Jul;20(1 Pt 1):201–212. doi: 10.1016/0270-9139(94)90154-6. [DOI] [PubMed] [Google Scholar]
- Tashiro T., Mashima Y., Yamamori H., Horibe K., Nishizawa M., Sanada M., Okui K. Increased lipoprotein X causes hyperlipidemia during intravenous administration of 10% fat emulsion in man. JPEN J Parenter Enteral Nutr. 1991 Sep-Oct;15(5):546–550. doi: 10.1177/0148607191015005546. [DOI] [PubMed] [Google Scholar]
- Voshol P. J., Havinga R., Wolters H., Ottenhoff R., Princen H. M., Oude Elferink R. P., Groen A. K., Kuipers F. Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology. 1998 May;114(5):1024–1034. doi: 10.1016/s0016-5085(98)70323-3. [DOI] [PubMed] [Google Scholar]
- Walli A. K., Seidel D. Role of lipoprotein-X in the pathogenesis of cholestatic hypercholesterolemia. Uptake of lipoprotein-X and its effect on 3-hydroxy-3-methylglutaryl coenzyme A reductase and chylomicron remnant removal in human fibroblasts, lymphocytes, and in the rat. J Clin Invest. 1984 Sep;74(3):867–879. doi: 10.1172/JCI111504. [DOI] [PMC free article] [PubMed] [Google Scholar]