Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Nov 15;102(10):1788–1797. doi: 10.1172/JCI3316

Reduced transplant arteriosclerosis in plasminogen-deficient mice.

L Moons 1, C Shi 1, V Ploplis 1, E Plow 1, E Haber 1, D Collen 1, P Carmeliet 1
PMCID: PMC509128  PMID: 9819364

Abstract

Recent gene targeting studies indicate that the plasminogen system is implicated in cell migration and matrix degradation during arterial neointima formation and atherosclerotic aneurysm formation. This study examined whether plasmin proteolysis is involved in accelerated posttransplant arteriosclerosis (graft arterial disease). Donor carotid arteries from wild-type B10.A2R mice were transplanted into either plasminogen wild-type (Plg+/+) or homozygous plasminogen-deficient (Plg-/-) recipient mice with a genetic background of 75% C57BL/6 and 25% 129. Within 15 d after allograft transplantation, leukocytes and macrophages infiltrated the graft intima in Plg+/+ and Plg-/- recipient mice to a similar extent. In Plg+/+ recipients, the elastic laminae in the transplant media exhibited breaks through which macrophages infiltrated before smooth muscle cell proliferation, whereas in Plg-/- recipients, macrophages failed to infiltrate the transplant media which remained structurally more intact. After 45 d of transplantation, a multilayered smooth muscle cell-rich transplant neointima developed in Plg+/+ hosts, in contrast to Plg-/- recipients, in which the transplants contained a smaller intima, predominantly consisting of leukocytes, macrophages, and thrombus. Media necrosis, fragmentation of the elastic laminae, and adventitial remodeling were more pronounced in Plg+/+ than in Plg-/- recipient mice. Expression of the plasminogen activators (PA), urokinase-type PA (u-PA) and tissue-type PA (t-PA), and expression of the matrix metalloproteinases (MMPs), MMP-3, MMP-9, MMP-12, and MMP-13, were significantly increased within 15 d of transplantation when cells actively migrate. These data indicate that plasmin proteolysis plays a major role in allograft arteriosclerosis by mediating elastin degradation, macrophage infiltration, media remodeling, medial smooth muscle cell migration, and formation of a neointima.

Full Text

The Full Text of this article is available as a PDF (931.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behrendt N., Rønne E., Danø K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler. 1995 May;376(5):269–279. [PubMed] [Google Scholar]
  2. Bugge T. H., Kombrinck K. W., Flick M. J., Daugherty C. C., Danton M. J., Degen J. L. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell. 1996 Nov 15;87(4):709–719. doi: 10.1016/s0092-8674(00)81390-2. [DOI] [PubMed] [Google Scholar]
  3. Carmeliet P., Collen D. Gene manipulation and transfer of the plasminogen and coagulation system in mice. Semin Thromb Hemost. 1996;22(6):525–542. doi: 10.1055/s-2007-999055. [DOI] [PubMed] [Google Scholar]
  4. Carmeliet P., Moons L., Collen D. Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc Res. 1998 Jul;39(1):8–33. doi: 10.1016/s0008-6363(98)00108-4. [DOI] [PubMed] [Google Scholar]
  5. Carmeliet P., Moons L., Herbert J. M., Crawley J., Lupu F., Lijnen R., Collen D. Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ Res. 1997 Nov;81(5):829–839. doi: 10.1161/01.res.81.5.829. [DOI] [PubMed] [Google Scholar]
  6. Carmeliet P., Moons L., Lijnen R., Baes M., Lemaître V., Tipping P., Drew A., Eeckhout Y., Shapiro S., Lupu F. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997 Dec;17(4):439–444. doi: 10.1038/ng1297-439. [DOI] [PubMed] [Google Scholar]
  7. Carmeliet P., Moons L., Lijnen R., Janssens S., Lupu F., Collen D., Gerard R. D. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation. 1997 Nov 4;96(9):3180–3191. doi: 10.1161/01.cir.96.9.3180. [DOI] [PubMed] [Google Scholar]
  8. Carmeliet P., Moons L., Ploplis V., Plow E., Collen D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest. 1997 Jan 15;99(2):200–208. doi: 10.1172/JCI119148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carmeliet P., Moons L., Stassen J. M., De Mol M., Bouché A., van den Oord J. J., Kockx M., Collen D. Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am J Pathol. 1997 Feb;150(2):761–776. [PMC free article] [PubMed] [Google Scholar]
  10. Carmeliet P., Schoonjans L., Kieckens L., Ream B., Degen J., Bronson R., De Vos R., van den Oord J. J., Collen D., Mulligan R. C. Physiological consequences of loss of plasminogen activator gene function in mice. Nature. 1994 Mar 31;368(6470):419–424. doi: 10.1038/368419a0. [DOI] [PubMed] [Google Scholar]
  11. Chapman H. A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol. 1997 Oct;9(5):714–724. doi: 10.1016/s0955-0674(97)80126-3. [DOI] [PubMed] [Google Scholar]
  12. Collen D., Lijnen H. R. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood. 1991 Dec 15;78(12):3114–3124. [PubMed] [Google Scholar]
  13. Dollery C. M., McEwan J. R., Henney A. M. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995 Nov;77(5):863–868. doi: 10.1161/01.res.77.5.863. [DOI] [PubMed] [Google Scholar]
  14. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997 Feb;18(1):4–25. doi: 10.1210/edrv.18.1.0287. [DOI] [PubMed] [Google Scholar]
  15. Frisch S. M., Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997 Oct;9(5):701–706. doi: 10.1016/s0955-0674(97)80124-x. [DOI] [PubMed] [Google Scholar]
  16. Isik F. F., McDonald T. O., Ferguson M., Yamanaka E., Gordon D. Transplant arteriosclerosis in a rat aortic model. Am J Pathol. 1992 Nov;141(5):1139–1149. [PMC free article] [PubMed] [Google Scholar]
  17. Kaushansky K. A new year greeting from a new editor . Blood. 1998 Jan 1;91(1):1–2. [PubMed] [Google Scholar]
  18. Lang R., Lustig M., Francois F., Sellinger M., Plesken H. Apoptosis during macrophage-dependent ocular tissue remodelling. Development. 1994 Dec;120(12):3395–3403. doi: 10.1242/dev.120.12.3395. [DOI] [PubMed] [Google Scholar]
  19. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995 Jun 1;91(11):2844–2850. doi: 10.1161/01.cir.91.11.2844. [DOI] [PubMed] [Google Scholar]
  20. Lijnen H. R., Van Hoef B., Lupu F., Moons L., Carmeliet P., Collen D. Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler Thromb Vasc Biol. 1998 Jul;18(7):1035–1045. doi: 10.1161/01.atv.18.7.1035. [DOI] [PubMed] [Google Scholar]
  21. Munger J. S., Harpel J. G., Gleizes P. E., Mazzieri R., Nunes I., Rifkin D. B. Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 1997 May;51(5):1376–1382. doi: 10.1038/ki.1997.188. [DOI] [PubMed] [Google Scholar]
  22. Nagano H., Mitchell R. N., Taylor M. K., Hasegawa S., Tilney N. L., Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997 Aug 1;100(3):550–557. doi: 10.1172/JCI119564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paul L. C. Functional and histologic characteristics of chronic renal allograft rejection. Clin Transplant. 1994 Jun;8(3 Pt 2):319–323. [PubMed] [Google Scholar]
  24. Ploplis V. A., Carmeliet P., Vazirzadeh S., Van Vlaenderen I., Moons L., Plow E. F., Collen D. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation. 1995 Nov 1;92(9):2585–2593. doi: 10.1161/01.cir.92.9.2585. [DOI] [PubMed] [Google Scholar]
  25. Russell M. E., Wallace A. F., Hancock W. W., Sayegh M. H., Adams D. H., Sibinga N. E., Wyner L. R., Karnovsky M. J. Upregulation of cytokines associated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation. 1995 Feb 27;59(4):572–578. [PubMed] [Google Scholar]
  26. Russell P. S., Chase C. M., Colvin R. B. Accelerated atheromatous lesions in mouse hearts transplanted to apolipoprotein-E-deficient recipients. Am J Pathol. 1996 Jul;149(1):91–99. [PMC free article] [PubMed] [Google Scholar]
  27. Russell P. S., Chase C. M., Winn H. J., Colvin R. B. Coronary atherosclerosis in transplanted mouse hearts. II. Importance of humoral immunity. J Immunol. 1994 May 15;152(10):5135–5141. [PubMed] [Google Scholar]
  28. Saksela O., Rifkin D. B. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol. 1988;4:93–126. doi: 10.1146/annurev.cb.04.110188.000521. [DOI] [PubMed] [Google Scholar]
  29. Shi C., Lee W. S., He Q., Zhang D., Fletcher D. L., Jr, Newell J. B., Haber E. Immunologic basis of transplant-associated arteriosclerosis. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4051–4056. doi: 10.1073/pnas.93.9.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shi C., Lee W. S., Russell M. E., Zhang D., Fletcher D. L., Newell J. B., Haber E. Hypercholesterolemia exacerbates transplant arteriosclerosis via increased neointimal smooth muscle cell accumulation: studies in apolipoprotein E knockout mice. Circulation. 1997 Oct 21;96(8):2722–2728. doi: 10.1161/01.cir.96.8.2722. [DOI] [PubMed] [Google Scholar]
  31. Shi C., Russell M. E., Bianchi C., Newell J. B., Haber E. Murine model of accelerated transplant arteriosclerosis. Circ Res. 1994 Aug;75(2):199–207. doi: 10.1161/01.res.75.2.199. [DOI] [PubMed] [Google Scholar]
  32. Tsirka S. E., Bugge T. H., Degen J. L., Strickland S. Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9779–9781. doi: 10.1073/pnas.94.18.9779. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES