Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):1895–1899. doi: 10.1172/JCI4672

Type 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes.

J Steinsapir 1, J Harney 1, P R Larsen 1
PMCID: PMC509140  PMID: 9835613

Abstract

The goal of these studies was to define the rate-limiting steps in the inactivation of type 2 iodothyronine deiodinase (D2). We examined the effects of ATP depletion, a lysosomal protease inhibitor, and an inhibitor of actin polymerization on D2 activity in the presence or absence of cycloheximide or 3,3', 5'-triiodothyronine (reverse T3, rT3) in rat pituitary tumor cells (GH4C1). We also analyzed the effects of the proteasomal proteolysis inhibitor carbobenzoxy- L-leucyl-L-leucyl-L-leucinal (MG132). The half-life of D2 activity in hypothyroid cells was 47 min after cycloheximide and 60 min with rT3 (3 nM). rT3 and cycloheximide were additive, reducing D2 half-life to 20 min. D2 degradation was partially inhibited by ATP depletion, but not by cytochalasin B or chloroquine. Incubation with MG132 alone increased D2 activity by 30-40% for several hours, and completely blocked the cycloheximide- or rT3-induced decrease in D2 activity. These results suggest that D2 is inactivated by proteasomal uptake and that substrate reduces D2 activity by accelerating degradation through this pathway. This is the first demonstration of a critical role for proteasomes in the post-translational regulation of D2 activity.

Full Text

The Full Text of this article is available as a PDF (130.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M. J., Kates A. L., Larsen P. R. Thyroid hormone regulates type I deiodinase messenger RNA in rat liver. Mol Endocrinol. 1990 May;4(5):743–748. doi: 10.1210/mend-4-5-743. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burmeister L. A., Pachucki J., St Germain D. L. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology. 1997 Dec;138(12):5231–5237. doi: 10.1210/endo.138.12.5602. [DOI] [PubMed] [Google Scholar]
  4. Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  5. Croteau W., Davey J. C., Galton V. A., St Germain D. L. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest. 1996 Jul 15;98(2):405–417. doi: 10.1172/JCI118806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farwell A. P., Leonard J. L. Identification of a 27-kDa protein with the properties of type II iodothyronine 5'-deiodinase in dibutyryl cyclic AMP-stimulated glial cells. J Biol Chem. 1989 Dec 5;264(34):20561–20567. [PubMed] [Google Scholar]
  7. Halperin Y., Shapiro L. E., Surks M. I. Down-regulation of type II L-thyroxine, 5'-monodeiodinase in cultured GC cells: different pathways of regulation by L-triiodothyronine and 3,3',5'-triiodo-L-thyronine. Endocrinology. 1994 Oct;135(4):1464–1469. doi: 10.1210/endo.135.4.7925108. [DOI] [PubMed] [Google Scholar]
  8. Jensen T. J., Loo M. A., Pind S., Williams D. B., Goldberg A. L., Riordan J. R. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell. 1995 Oct 6;83(1):129–135. doi: 10.1016/0092-8674(95)90241-4. [DOI] [PubMed] [Google Scholar]
  9. Koenig R. J., Leonard J. L., Senator D., Rappaport N., Watson A. Y., Larsen P. R. Regulation of thyroxine 5'-deiodinase activity by 3,5,3'-triiodothyronine in cultured rat anterior pituitary cells. Endocrinology. 1984 Jul;115(1):324–329. doi: 10.1210/endo-115-1-324. [DOI] [PubMed] [Google Scholar]
  10. Koenig R. J. Regulation of thyroxine 5'-deiodinase by thyroid hormones and activators of protein kinase C in GH4C1 cells. Endocrinology. 1986 Apr;118(4):1491–1497. doi: 10.1210/endo-118-4-1491. [DOI] [PubMed] [Google Scholar]
  11. Larsen P. R., Silva J. E., Kaplan M. M. Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev. 1981 Winter;2(1):87–102. doi: 10.1210/edrv-2-1-87. [DOI] [PubMed] [Google Scholar]
  12. Lee D. H., Goldberg A. L. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem. 1996 Nov 1;271(44):27280–27284. doi: 10.1074/jbc.271.44.27280. [DOI] [PubMed] [Google Scholar]
  13. Leonard J. L., Kaplan M. M., Visser T. J., Silva J. E., Larsen P. R. Cerebral cortex responds rapidly to thyroid hormones. Science. 1981 Oct 30;214(4520):571–573. doi: 10.1126/science.7291997. [DOI] [PubMed] [Google Scholar]
  14. Leonard J. L., Larsen P. R. Thyroid hormone metabolism in primary cultures of fetal rat brain cells. Brain Res. 1985 Feb 18;327(1-2):1–13. doi: 10.1016/0006-8993(85)91493-3. [DOI] [PubMed] [Google Scholar]
  15. Leonard J. L., Siegrist-Kaiser C. A., Zuckerman C. J. Regulation of type II iodothyronine 5'-deiodinase by thyroid hormone. Inhibition of actin polymerization blocks enzyme inactivation in cAMP-stimulated glial cells. J Biol Chem. 1990 Jan 15;265(2):940–946. [PubMed] [Google Scholar]
  16. Leonard J. L., Silva J. E., Kaplan M. M., Mellen S. A., Visser T. J., Larsen P. R. Acute posttranscriptional regulation of cerebrocortical and pituitary iodothyronine 5'-deiodinases by thyroid hormone. Endocrinology. 1984 Mar;114(3):998–1004. doi: 10.1210/endo-114-3-998. [DOI] [PubMed] [Google Scholar]
  17. LoPresti J. S., Eigen A., Kaptein E., Anderson K. P., Spencer C. A., Nicoloff J. T. Alterations in 3,3'5'-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest. 1989 Nov;84(5):1650–1656. doi: 10.1172/JCI114343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Obregon M. J., Larsen P. R., Silva J. E. The role of 3,3',5'-triiodothyronine in the regulation of type II iodothyronine 5'-deiodinase in the rat cerebral cortex. Endocrinology. 1986 Nov;119(5):2186–2192. doi: 10.1210/endo-119-5-2186. [DOI] [PubMed] [Google Scholar]
  19. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  20. Salvatore D., Bartha T., Harney J. W., Larsen P. R. Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology. 1996 Aug;137(8):3308–3315. doi: 10.1210/endo.137.8.8754756. [DOI] [PubMed] [Google Scholar]
  21. Silva J. E., Larsen P. R. Comparison of iodothyronine 5'-deiodinase and other thyroid-hormone-dependent enzyme activities in the cerebral cortex of hypothyroid neonatal rat. Evidence for adaptation to hypothyroidism. J Clin Invest. 1982 Nov;70(5):1110–1123. doi: 10.1172/JCI110699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silva J. E., Larsen P. R. Pituitary nuclear 3,5,3'-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science. 1977 Nov 11;198(4317):617–620. doi: 10.1126/science.199941. [DOI] [PubMed] [Google Scholar]
  23. Silva J. E., Leonard J. L., Crantz F. R., Larsen P. R. Evidence for two tissue-specific pathways for in vivo thyroxine 5'-deiodination in the rat. J Clin Invest. 1982 May;69(5):1176–1184. doi: 10.1172/JCI110554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silva J. E., Leonard J. L. Regulation of rat cerebrocortical and adenohypophyseal type II 5'-deiodinase by thyroxine, triiodothyronine, and reverse triiodothyronine. Endocrinology. 1985 Apr;116(4):1627–1635. doi: 10.1210/endo-116-4-1627. [DOI] [PubMed] [Google Scholar]
  25. St Germain D. L. Hormonal control of a low Km (type II) iodothyronine 5'-deiodinase in cultured NB41A3 mouse neuroblastoma cells. Endocrinology. 1986 Aug;119(2):840–846. doi: 10.1210/endo-119-2-840. [DOI] [PubMed] [Google Scholar]
  26. St Germain D. L. The effects and interactions of substrates, inhibitors, and the cellular thiol-disulfide balance on the regulation of type II iodothyronine 5'-deiodinase. Endocrinology. 1988 May;122(5):1860–1868. doi: 10.1210/endo-122-5-1860. [DOI] [PubMed] [Google Scholar]
  27. Tawa N. E., Jr, Kettelhut I. C., Goldberg A. L. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle. Am J Physiol. 1992 Aug;263(2 Pt 1):E326–E334. doi: 10.1152/ajpendo.1992.263.2.E326. [DOI] [PubMed] [Google Scholar]
  28. Tawa N. E., Jr, Odessey R., Goldberg A. L. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J Clin Invest. 1997 Jul 1;100(1):197–203. doi: 10.1172/JCI119513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tu H. M., Kim S. W., Salvatore D., Bartha T., Legradi G., Larsen P. R., Lechan R. M. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology. 1997 Aug;138(8):3359–3368. doi: 10.1210/endo.138.8.5318. [DOI] [PubMed] [Google Scholar]
  30. Visser T. J., Kaplan M. M., Leonard J. L., Larsen P. R. Evidence for two pathways of iodothyronine 5'-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J Clin Invest. 1983 Apr;71(4):992–1002. doi: 10.1172/JCI110854. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES