Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):1911–1919. doi: 10.1172/JCI1919

KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1.

B Gebelein 1, M Fernandez-Zapico 1, M Imoto 1, R Urrutia 1
PMCID: PMC509142  PMID: 9835615

Abstract

The study of zinc finger proteins has revealed their potential to act as oncogenes or tumor suppressors. Here we report the molecular, biochemical, and functional characterization of KS1 (KRAB/zinc finger suppressor protein 1), a novel, ubiquitously expressed zinc finger gene initially isolated from a rat pancreas library. KS1 contains 10 C2H2 zinc fingers, a KRAB-A/B motif, and an ID sequence that has been shown previously to participate in growth factor-regulated gene expression. Northern blot analysis using pancreatic cell lines demonstrates that KS1 mRNA is inducible by serum and epidermal growth factor, suggesting a role for this gene in cell growth regulation. Biochemical analysis reveals that KS1 is a nuclear protein containing two transcriptional repressor domains, R1 and R2. R1 corresponds to the KRAB-A motif, whereas R2 represents a novel sequence. Transformation assays using NIH3T3 cells demonstrate that KS1 suppresses transformation by the potent oncogenes Ha-ras, Galpha12, and Galpha13. Deletion of the R1/ KRAB-A domain does not modify the transformation suppressive activity of KS1, whereas deletion of R2 abolishes this function. Thus, KS1 is a novel growth factor-inducible zinc finger transcriptional repressor protein with the potential to protect against neoplastic transformation induced by several oncogenes.

Full Text

The Full Text of this article is available as a PDF (656.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdollahi A., Roberts D., Godwin A. K., Schultz D. C., Sonoda G., Testa J. R., Hamilton T. C. Identification of a zinc-finger gene at 6q25: a chromosomal region implicated in development of many solid tumors. Oncogene. 1997 Apr 24;14(16):1973–1979. doi: 10.1038/sj.onc.1201034. [DOI] [PubMed] [Google Scholar]
  2. Aubry M., Demczuk S., Desmaze C., Aikem M., Aurias A., Julien J. P., Rouleau G. A. Isolation of a zinc finger gene consistently deleted in DiGeorge syndrome. Hum Mol Genet. 1993 Oct;2(10):1583–1587. doi: 10.1093/hmg/2.10.1583. [DOI] [PubMed] [Google Scholar]
  3. Bartel D. P., Sheng M., Lau L. F., Greenberg M. E. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev. 1989 Mar;3(3):304–313. doi: 10.1101/gad.3.3.304. [DOI] [PubMed] [Google Scholar]
  4. Bellefroid E. J., Poncelet D. A., Lecocq P. J., Revelant O., Martial J. A. The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3608–3612. doi: 10.1073/pnas.88.9.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blok L. J., Grossmann M. E., Perry J. E., Tindall D. J. Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol. 1995 Nov;9(11):1610–1620. doi: 10.1210/mend.9.11.8584037. [DOI] [PubMed] [Google Scholar]
  6. Brady G., Williams R. L., Nordström K., Vennström B., Iscove N. N. A selectable temperature-sensitive v-src Moloney retrovirus. Oncogene. 1988 Dec;3(6):687–689. [PubMed] [Google Scholar]
  7. Bruening W., Moffett P., Chia S., Heinrich G., Pelletier J. Identification of nuclear localization signals within the zinc fingers of the WT1 tumor suppressor gene product. FEBS Lett. 1996 Sep 9;393(1):41–47. doi: 10.1016/0014-5793(96)00853-8. [DOI] [PubMed] [Google Scholar]
  8. Call K. M., Glaser T., Ito C. Y., Buckler A. J., Pelletier J., Haber D. A., Rose E. A., Kral A., Yeger H., Lewis W. H. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell. 1990 Feb 9;60(3):509–520. doi: 10.1016/0092-8674(90)90601-a. [DOI] [PubMed] [Google Scholar]
  9. Cook T. A., Mesa K. J., Gebelein B. A., Urrutia R. A. Upregulation of dynamin II expression during the acquisition of a mature pancreatic acinar cell phenotype. J Histochem Cytochem. 1996 Dec;44(12):1373–1378. doi: 10.1177/44.12.8985129. [DOI] [PubMed] [Google Scholar]
  10. Cook T. A., Urrutia R., McNiven M. A. Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):644–648. doi: 10.1073/pnas.91.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cook T., Gebelein B., Mesa K., Mladek A., Urrutia R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem. 1998 Oct 2;273(40):25929–25936. doi: 10.1074/jbc.273.40.25929. [DOI] [PubMed] [Google Scholar]
  12. Cox A. D., Der C. J. Biological assays for cellular transformation. Methods Enzymol. 1994;238:277–294. doi: 10.1016/0076-6879(94)38026-0. [DOI] [PubMed] [Google Scholar]
  13. Dahmane N., Lee J., Robins P., Heller P., Ruiz i Altaba A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature. 1997 Oct 23;389(6653):876–881. doi: 10.1038/39918. [DOI] [PubMed] [Google Scholar]
  14. El Rouby S., Newcomb E. W. Identification of Bcd, a novel proto-oncogene expressed in B-cells. Oncogene. 1996 Dec 19;13(12):2623–2630. [PubMed] [Google Scholar]
  15. Friedman J. R., Fredericks W. J., Jensen D. E., Speicher D. W., Huang X. P., Neilson E. G., Rauscher F. J., 3rd KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996 Aug 15;10(16):2067–2078. doi: 10.1101/gad.10.16.2067. [DOI] [PubMed] [Google Scholar]
  16. Gashler A., Sukhatme V. P. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol. 1995;50:191–224. doi: 10.1016/s0079-6603(08)60815-6. [DOI] [PubMed] [Google Scholar]
  17. Gebelein B., Mesa K., Urrutia R. A novel profile of expressed sequence tags for zinc finger encoding genes from the poorly differentiated exocrine pancreatic cell line AR4IP. Cancer Lett. 1996 Aug 2;105(2):225–231. doi: 10.1016/0304-3835(96)04286-3. [DOI] [PubMed] [Google Scholar]
  18. Glaichenhaus N., Cuzin F. A role for ID repetitive sequences in growth- and transformation-dependent regulation of gene expression in rat fibroblasts. Cell. 1987 Sep 25;50(7):1081–1089. doi: 10.1016/0092-8674(87)90174-7. [DOI] [PubMed] [Google Scholar]
  19. Guiochon-Mantel A., Loosfelt H., Lescop P., Christin-Maitre S., Perrot-Applanat M., Milgrom E. Mechanisms of nuclear localization of the progesterone receptor. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):209–215. doi: 10.1016/0960-0760(92)90346-k. [DOI] [PubMed] [Google Scholar]
  20. Imoto M., Tachibana I., Urrutia R. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J Cell Sci. 1998 May;111(Pt 10):1341–1349. doi: 10.1242/jcs.111.10.1341. [DOI] [PubMed] [Google Scholar]
  21. Kim S. S., Chen Y. M., O'Leary E., Witzgall R., Vidal M., Bonventre J. V. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15299–15304. doi: 10.1073/pnas.93.26.15299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klug A., Schwabe J. W. Protein motifs 5. Zinc fingers. FASEB J. 1995 May;9(8):597–604. [PubMed] [Google Scholar]
  23. Liu C., Calogero A., Ragona G., Adamson E., Mercola D. EGR-1, the reluctant suppression factor: EGR-1 is known to function in the regulation of growth, differentiation, and also has significant tumor suppressor activity and a mechanism involving the induction of TGF-beta1 is postulated to account for this suppressor activity. Crit Rev Oncog. 1996;7(1-2):101–125. [PubMed] [Google Scholar]
  24. Lopingco M. C., Perkins A. S. Molecular analysis of Evi1, a zinc finger oncogene involved in myeloid leukemia. Curr Top Microbiol Immunol. 1996;211:211–222. doi: 10.1007/978-3-642-85232-9_21. [DOI] [PubMed] [Google Scholar]
  25. Majello B., De Luca P., Lania L. Sp3 is a bifunctional transcription regulator with modular independent activation and repression domains. J Biol Chem. 1997 Feb 14;272(7):4021–4026. doi: 10.1074/jbc.272.7.4021. [DOI] [PubMed] [Google Scholar]
  26. Margolin J. F., Friedman J. R., Meyer W. K., Vissing H., Thiesen H. J., Rauscher F. J., 3rd Krüppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4509–4513. doi: 10.1073/pnas.91.10.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moosmann P., Georgiev O., Le Douarin B., Bourquin J. P., Schaffner W. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 1996 Dec 15;24(24):4859–4867. doi: 10.1093/nar/24.24.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pengue G., Calabrò V., Bartoli P. C., Pagliuca A., Lania L. Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res. 1994 Aug 11;22(15):2908–2914. doi: 10.1093/nar/22.15.2908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pengue G., Lania L. Krüppel-associated box-mediated repression of RNA polymerase II promoters is influenced by the arrangement of basal promoter elements. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1015–1020. doi: 10.1073/pnas.93.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reddy J. C., Licht J. D. The WT1 Wilms' tumor suppressor gene: how much do we really know? Biochim Biophys Acta. 1996 May 16;1287(1):1–28. doi: 10.1016/0304-419x(95)00014-7. [DOI] [PubMed] [Google Scholar]
  31. Sadowski I. Uses for GAL4 expression in mammalian cells. Genet Eng (N Y) 1995;17:119–148. [PubMed] [Google Scholar]
  32. Santos E., Nebreda A. R. Structural and functional properties of ras proteins. FASEB J. 1989 Aug;3(10):2151–2163. doi: 10.1096/fasebj.3.10.2666231. [DOI] [PubMed] [Google Scholar]
  33. Sauer F., Fondell J. D., Ohkuma Y., Roeder R. G., Jäckle H. Control of transcription by Krüppel through interactions with TFIIB and TFIIE beta. Nature. 1995 May 11;375(6527):162–164. doi: 10.1038/375162a0. [DOI] [PubMed] [Google Scholar]
  34. Sauer F., Jäckle H. Concentration-dependent transcriptional activation or repression by Krüppel from a single binding site. Nature. 1991 Oct 10;353(6344):563–566. doi: 10.1038/353563a0. [DOI] [PubMed] [Google Scholar]
  35. Schulz T. C., Hopwood B., Rathjen P. D., Wells J. R. An unusual arrangement of 13 zinc fingers in the vertebrate gene Z13. Biochem J. 1995 Oct 1;311(Pt 1):219–224. doi: 10.1042/bj3110219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Serrano M., Gómez-Lahoz E., DePinho R. A., Beach D., Bar-Sagi D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science. 1995 Jan 13;267(5195):249–252. doi: 10.1126/science.7809631. [DOI] [PubMed] [Google Scholar]
  37. Tachibana I., Imoto M., Adjei P. N., Gores G. J., Subramaniam M., Spelsberg T. C., Urrutia R. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997 May 15;99(10):2365–2374. doi: 10.1172/JCI119418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tay J. S. Molecular genetics of Wilms' tumour. J Paediatr Child Health. 1995 Oct;31(5):379–383. doi: 10.1111/j.1440-1754.1995.tb00841.x. [DOI] [PubMed] [Google Scholar]
  39. Wang Z. Y., Qiu Q. Q., Gurrieri M., Huang J., Deuel T. F. WT1, the Wilms' tumor suppressor gene product, represses transcription through an interactive nuclear protein. Oncogene. 1995 Mar 16;10(6):1243–1247. [PubMed] [Google Scholar]
  40. Werner H., Roberts C. T., Jr, Rauscher F. J., 3rd, LeRoith D. Regulation of insulin-like growth factor I receptor gene expression by the Wilms' tumor suppressor WT1. J Mol Neurosci. 1996 Summer;7(2):111–123. doi: 10.1007/BF02736791. [DOI] [PubMed] [Google Scholar]
  41. Winkles J. A. Serum- and polypeptide growth factor-inducible gene expression in mouse fibroblasts. Prog Nucleic Acid Res Mol Biol. 1998;58:41–78. doi: 10.1016/s0079-6603(08)60033-1. [DOI] [PubMed] [Google Scholar]
  42. Witzgall R., O'Leary E., Leaf A., Onaldi D., Bonventre J. V. The Krüppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4514–4518. doi: 10.1073/pnas.91.10.4514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xu N., Bradley L., Ambdukar I., Gutkind J. S. A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6741–6745. doi: 10.1073/pnas.90.14.6741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Xu N., Voyno-Yasenetskaya T., Gutkind J. S. Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun. 1994 Jun 15;201(2):603–609. doi: 10.1006/bbrc.1994.1744. [DOI] [PubMed] [Google Scholar]
  45. Zeleznik-Le N. J., Harden A. M., Rowley J. D. 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10610–10614. doi: 10.1073/pnas.91.22.10610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. el-Baradi T., Pieler T. Zinc finger proteins: what we know and what we would like to know. Mech Dev. 1991 Nov;35(3):155–169. doi: 10.1016/0925-4773(91)90015-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES