Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):1927–1932. doi: 10.1172/JCI4862

Polymorphisms of the 5' leader cistron of the human beta2-adrenergic receptor regulate receptor expression.

D W McGraw 1, S L Forbes 1, L A Kramer 1, S B Liggett 1
PMCID: PMC509144  PMID: 9835617

Abstract

Cellular expression of the beta2-adrenergic receptor (beta2AR) is controlled in part by a 19-amino acid peptide that regulates mRNA translation. This peptide is encoded by a short open reading frame, termed the 5' leader cistron (5'LC), which is 102 bp upstream of the beta2AR coding block. In 176 normal subjects we found a single nucleotide polymorphism resulting in either Arg (previously denoted wild-type) or Cys at position 19 of this peptide. Allele frequencies were 0.37 for Arg and 0.63 for Cys. To determine if these variants altered beta2AR expression, COS-7 cells were transfected with polymorphic constructs consisting of 1,989 bp encompassing the 5'LC and the beta2AR coding block exactly as found in the human gene. beta2AR density, as determined by [125I]CYP radioligand binding, was 72% higher in cells transfected with the 5'LC-Cys19 construct as compared with those transfected with the 5'LC-Arg19 construct and 110% higher when a cotransfection technique with a luciferase construct was used to control for transfection efficiency. Levels of the two mRNA transcripts were not different, confirming in vitro studies that the upstream peptide regulates receptor expression at the translational level. In human airway smooth muscle cells that natively express beta2AR, receptor expression was approximately twofold higher in those bearing the Cys versus the Arg polymorphism, confirming the phenotype in a relevant cell type. Linkage disequilibrium was observed between the 5'LC-Cys polymorphism and the beta2AR coding block polymorphisms Arg16 and Gln27 (P < 0.0001), although several different haplotypes were identified. Thus, beta2AR expression in the human population is controlled by a common polymorphism of this 5'LC, and may be responsible for interindividual variation in betaAR responsiveness.

Full Text

The Full Text of this article is available as a PDF (321.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
  2. Chattopadhyay N., Mithal A., Brown E. M. The calcium-sensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocr Rev. 1996 Aug;17(4):289–307. doi: 10.1210/edrv-17-4-289. [DOI] [PubMed] [Google Scholar]
  3. Dewar J. C., Wilkinson J., Wheatley A., Thomas N. S., Doull I., Morton N., Lio P., Harvey J. F., Liggett S. B., Holgate S. T. The glutamine 27 beta2-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J Allergy Clin Immunol. 1997 Aug;100(2):261–265. doi: 10.1016/s0091-6749(97)70234-3. [DOI] [PubMed] [Google Scholar]
  4. Fedyk E. R., Adawi A., Looney R. J., Phipps R. P. Regulation of IgE and cytokine production by cAMP: implications for extrinsic asthma. Clin Immunol Immunopathol. 1996 Nov;81(2):101–113. doi: 10.1006/clin.1996.0165. [DOI] [PubMed] [Google Scholar]
  5. Green S. A., Cole G., Jacinto M., Innis M., Liggett S. B. A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem. 1993 Nov 5;268(31):23116–23121. [PubMed] [Google Scholar]
  6. Green S. A., Turki J., Bejarano P., Hall I. P., Liggett S. B. Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 1995 Jul;13(1):25–33. doi: 10.1165/ajrcmb.13.1.7598936. [DOI] [PubMed] [Google Scholar]
  7. Green S. A., Turki J., Innis M., Liggett S. B. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994 Aug 16;33(32):9414–9419. doi: 10.1021/bi00198a006. [DOI] [PubMed] [Google Scholar]
  8. Hall I. P., Wheatley A., Wilding P., Liggett S. B. Association of Glu 27 beta 2-adrenoceptor polymorphism with lower airway reactivity in asthmatic subjects. Lancet. 1995 May 13;345(8959):1213–1214. doi: 10.1016/s0140-6736(95)91994-5. [DOI] [PubMed] [Google Scholar]
  9. JONES A. S. USE OF ALKYLTRIMETHYLAMMONIUM BROMIDES FOR THE ISOLATION OF RIBO- AND DESOXYRIBO-NUCLEIC ACIDS. Nature. 1963 Jul 20;199:280–282. doi: 10.1038/199280b0. [DOI] [PubMed] [Google Scholar]
  10. Kobilka B. K., Dixon R. A., Frielle T., Dohlman H. G., Bolanowski M. A., Sigal I. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J. cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A. 1987 Jan;84(1):46–50. doi: 10.1073/pnas.84.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kobilka B. K., Frielle T., Dohlman H. G., Bolanowski M. A., Dixon R. A., Keller P., Caron M. G., Lefkowitz R. J. Delineation of the intronless nature of the genes for the human and hamster beta 2-adrenergic receptor and their putative promoter regions. J Biol Chem. 1987 May 25;262(15):7321–7327. [PubMed] [Google Scholar]
  12. Kotanko P., Binder A., Tasker J., DeFreitas P., Kamdar S., Clark A. J., Skrabal F., Caulfield M. Essential hypertension in African Caribbeans associates with a variant of the beta2-adrenoceptor. Hypertension. 1997 Oct;30(4):773–776. doi: 10.1161/01.hyp.30.4.773. [DOI] [PubMed] [Google Scholar]
  13. Large V., Hellström L., Reynisdottir S., Lönnqvist F., Eriksson P., Lannfelt L., Arner P. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest. 1997 Dec 15;100(12):3005–3013. doi: 10.1172/JCI119854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liggett S. B., Wagoner L. E., Craft L. L., Hornung R. W., Hoit B. D., McIntosh T. C., Walsh R. A. The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest. 1998 Oct 15;102(8):1534–1539. doi: 10.1172/JCI4059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martinez F. D., Graves P. E., Baldini M., Solomon S., Erickson R. Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest. 1997 Dec 15;100(12):3184–3188. doi: 10.1172/JCI119874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McGraw D. W., Donnelly E. T., Eason M. G., Green S. A., Liggett S. B. Role of beta ARK in long-term agonist-promoted desensitisation of the beta 2-adrenergic receptor. Cell Signal. 1998 Mar;10(3):197–204. doi: 10.1016/s0898-6568(97)00112-5. [DOI] [PubMed] [Google Scholar]
  17. McGraw D. W., Liggett S. B. Heterogeneity in beta-adrenergic receptor kinase expression in the lung accounts for cell-specific desensitization of the beta2-adrenergic receptor. J Biol Chem. 1997 Mar 14;272(11):7338–7344. doi: 10.1074/jbc.272.11.7338. [DOI] [PubMed] [Google Scholar]
  18. Parola A. L., Kobilka B. K. The peptide product of a 5' leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem. 1994 Feb 11;269(6):4497–4505. [PubMed] [Google Scholar]
  19. Reihsaus E., Innis M., MacIntyre N., Liggett S. B. Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol. 1993 Mar;8(3):334–339. doi: 10.1165/ajrcmb/8.3.334. [DOI] [PubMed] [Google Scholar]
  20. Rosenthal W., Antaramian A., Gilbert S., Birnbaumer M. Nephrogenic diabetes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J Biol Chem. 1993 Jun 25;268(18):13030–13033. [PubMed] [Google Scholar]
  21. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  22. Tan S., Hall I. P., Dewar J., Dow E., Lipworth B. Association between beta 2-adrenoceptor polymorphism and susceptibility to bronchodilator desensitisation in moderately severe stable asthmatics. Lancet. 1997 Oct 4;350(9083):995–999. doi: 10.1016/S0140-6736(97)03211-X. [DOI] [PubMed] [Google Scholar]
  23. Themmen A. P., Martens J. W., Brunner H. G. Gonadotropin receptor mutations. J Endocrinol. 1997 May;153(2):179–183. doi: 10.1677/joe.0.1530179. [DOI] [PubMed] [Google Scholar]
  24. Turki J., Pak J., Green S. A., Martin R. J., Liggett S. B. Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J Clin Invest. 1995 Apr;95(4):1635–1641. doi: 10.1172/JCI117838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weir T. D., Mallek N., Sandford A. J., Bai T. R., Awadh N., Fitzgerald J. M., Cockcroft D., James A., Liggett S. B., Paré P. D. beta2-Adrenergic receptor haplotypes in mild, moderate and fatal/near fatal asthma. Am J Respir Crit Care Med. 1998 Sep;158(3):787–791. doi: 10.1164/ajrccm.158.3.9801035. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES