Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):1933–1941. doi: 10.1172/JCI4619

Pivotal role of TARC, a CC chemokine, in bacteria-induced fulminant hepatic failure in mice.

H Yoneyama 1, A Harada 1, T Imai 1, M Baba 1, O Yoshie 1, Y Zhang 1, H Higashi 1, M Murai 1, H Asakura 1, K Matsushima 1
PMCID: PMC509145  PMID: 9835618

Abstract

Thymus and activation-regulated chemokine (TARC) is a recently identified lymphocyte-directed CC chemokine which specifically chemoattracts T helper type 2 CD4(+) T cells in human. To establish the pathophysiological roles of TARC in vivo, we investigated whether a monoclonal antibody (mAb) against TARC could inhibit the induction of hepatic lesions in murine model using Propionibacterium acnes and lipopolysaccharide (LPS). P. acnes-induced intrahepatic granuloma formation in the priming phase is essential to the subsequent liver injury elicited by a low dose of LPS. The priming phase appears to be dominated by Th1 type immune responses determined by the profile of chemokine and chemokine receptor expression. TARC was selectively produced by granuloma-forming cells, and CC chemokine receptor 4 (CCR4)-expressing CD4(+) T cells migrated into the liver after LPS administration. In vivo injection of anti-TARC mAb just before LPS administration protected the mice from acute lethal liver damage, which was accompanied by a significant reduction of both CCR4 mRNA expression and IL-4 production by liver-infiltrating CD4(+) T cells. Moreover, both TNF-alpha and Fas ligand expressions in the liver were decreased by anti-TARC treatment. These results suggest that recruitment of IL-4-producing CCR4(+) CD4(+) T cells by granuloma-derived TARC into the liver parenchyma may be a key cause of massive liver injury after systemic LPS administration.

Full Text

The Full Text of this article is available as a PDF (512.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando K., Moriyama T., Guidotti L. G., Wirth S., Schreiber R. D., Schlicht H. J., Huang S. N., Chisari F. V. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J Exp Med. 1993 Nov 1;178(5):1541–1554. doi: 10.1084/jem.178.5.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austrup F., Vestweber D., Borges E., Löhning M., Bräuer R., Herz U., Renz H., Hallmann R., Scheffold A., Radbruch A. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature. 1997 Jan 2;385(6611):81–83. doi: 10.1038/385081a0. [DOI] [PubMed] [Google Scholar]
  3. Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998 Apr 9;392(6676):565–568. doi: 10.1038/33340. [DOI] [PubMed] [Google Scholar]
  4. Bonecchi R., Bianchi G., Bordignon P. P., D'Ambrosio D., Lang R., Borsatti A., Sozzani S., Allavena P., Gray P. A., Mantovani A. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998 Jan 5;187(1):129–134. doi: 10.1084/jem.187.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butcher E. C., Picker L. J. Lymphocyte homing and homeostasis. Science. 1996 Apr 5;272(5258):60–66. doi: 10.1126/science.272.5258.60. [DOI] [PubMed] [Google Scholar]
  6. Farber J. M. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol. 1997 Mar;61(3):246–257. [PubMed] [Google Scholar]
  7. Galle P. R., Hofmann W. J., Walczak H., Schaller H., Otto G., Stremmel W., Krammer P. H., Runkel L. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med. 1995 Nov 1;182(5):1223–1230. doi: 10.1084/jem.182.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heid C. A., Stevens J., Livak K. J., Williams P. M. Real time quantitative PCR. Genome Res. 1996 Oct;6(10):986–994. doi: 10.1101/gr.6.10.986. [DOI] [PubMed] [Google Scholar]
  9. Imai T., Baba M., Nishimura M., Kakizaki M., Takagi S., Yoshie O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem. 1997 Jun 6;272(23):15036–15042. doi: 10.1074/jbc.272.23.15036. [DOI] [PubMed] [Google Scholar]
  10. Imai T., Chantry D., Raport C. J., Wood C. L., Nishimura M., Godiska R., Yoshie O., Gray P. W. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem. 1998 Jan 16;273(3):1764–1768. doi: 10.1074/jbc.273.3.1764. [DOI] [PubMed] [Google Scholar]
  11. Imai T., Yoshida T., Baba M., Nishimura M., Kakizaki M., Yoshie O. Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J Biol Chem. 1996 Aug 30;271(35):21514–21521. doi: 10.1074/jbc.271.35.21514. [DOI] [PubMed] [Google Scholar]
  12. Loetscher P., Uguccioni M., Bordoli L., Baggiolini M., Moser B., Chizzolini C., Dayer J. M. CCR5 is characteristic of Th1 lymphocytes. Nature. 1998 Jan 22;391(6665):344–345. doi: 10.1038/34814. [DOI] [PubMed] [Google Scholar]
  13. Lowin B., Hahne M., Mattmann C., Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994 Aug 25;370(6491):650–652. doi: 10.1038/370650a0. [DOI] [PubMed] [Google Scholar]
  14. Matsui K., Yoshimoto T., Tsutsui H., Hyodo Y., Hayashi N., Hiroishi K., Kawada N., Okamura H., Nakanishi K., Higashino K. Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells. J Immunol. 1997 Jul 1;159(1):97–106. [PubMed] [Google Scholar]
  15. Moriyama H., Yamamoto T., Takatsuka H., Umezu H., Tokunaga K., Nagano T., Arakawa M., Naito M. Expression of macrophage colony-stimulating factor and its receptor in hepatic granulomas of Kupffer-cell-depleted mice. Am J Pathol. 1997 Jun;150(6):2047–2060. [PMC free article] [PubMed] [Google Scholar]
  16. Nagakawa J., Hishinuma I., Hirota K., Miyamoto K., Yamanaka T., Tsukidate K., Katayama K., Yamatsu I. Involvement of tumor necrosis factor-alpha in the pathogenesis of activated macrophage-mediated hepatitis in mice. Gastroenterology. 1990 Sep;99(3):758–765. doi: 10.1016/0016-5085(90)90965-4. [DOI] [PubMed] [Google Scholar]
  17. Ogasawara J., Watanabe-Fukunaga R., Adachi M., Matsuzawa A., Kasugai T., Kitamura Y., Itoh N., Suda T., Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature. 1993 Aug 26;364(6440):806–809. doi: 10.1038/364806a0. [DOI] [PubMed] [Google Scholar]
  18. Qin S., Rottman J. B., Myers P., Kassam N., Weinblatt M., Loetscher M., Koch A. E., Moser B., Mackay C. R. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 1998 Feb 15;101(4):746–754. doi: 10.1172/JCI1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramsdell F., Seaman M. S., Miller R. E., Picha K. S., Kennedy M. K., Lynch D. H. Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Int Immunol. 1994 Oct;6(10):1545–1553. doi: 10.1093/intimm/6.10.1545. [DOI] [PubMed] [Google Scholar]
  20. Sallusto F., Lenig D., Mackay C. R., Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med. 1998 Mar 16;187(6):875–883. doi: 10.1084/jem.187.6.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sallusto F., Mackay C. R., Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science. 1997 Sep 26;277(5334):2005–2007. doi: 10.1126/science.277.5334.2005. [DOI] [PubMed] [Google Scholar]
  22. Takahashi M., Ogasawara K., Takeda K., Hashimoto W., Sakihara H., Kumagai K., Anzai R., Satoh M., Seki S. LPS induces NK1.1+ alpha beta T cells with potent cytotoxicity in the liver of mice via production of IL-12 from Kupffer cells. J Immunol. 1996 Apr 1;156(7):2436–2442. [PubMed] [Google Scholar]
  23. Tanaka Y., Kobayashi K., Takahashi A., Arai I., Higuchi S., Otomo S., Habu S., Nishimura T. Inhibition of inflammatory liver injury by a monoclonal antibody against lymphocyte function-associated antigen-1. J Immunol. 1993 Nov 1;151(9):5088–5095. [PubMed] [Google Scholar]
  24. Tanaka Y., Takahashi A., Watanabe K., Takayama K., Yahata T., Habu S., Nishimura T. A pivotal role of IL-12 in Th1-dependent mouse liver injury. Int Immunol. 1996 Apr;8(4):569–576. doi: 10.1093/intimm/8.4.569. [DOI] [PubMed] [Google Scholar]
  25. Tsuji H., Harada A., Mukaida N., Nakanuma Y., Bluethmann H., Kaneko S., Yamakawa K., Nakamura S. I., Kobayashi K. I., Matsushima K. Tumor necrosis factor receptor p55 is essential for intrahepatic granuloma formation and hepatocellular apoptosis in a murine model of bacterium-induced fulminant hepatitis. Infect Immun. 1997 May;65(5):1892–1898. doi: 10.1128/iai.65.5.1892-1898.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsutsui H., Matsui K., Kawada N., Hyodo Y., Hayashi N., Okamura H., Higashino K., Nakanishi K. IL-18 accounts for both TNF-alpha- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J Immunol. 1997 Oct 15;159(8):3961–3967. [PubMed] [Google Scholar]
  27. Watanabe H., Ohtsuka K., Kimura M., Ikarashi Y., Ohmori K., Kusumi A., Ohteki T., Seki S., Abo T. Details of an isolation method for hepatic lymphocytes in mice. J Immunol Methods. 1992 Feb 5;146(2):145–154. doi: 10.1016/0022-1759(92)90223-g. [DOI] [PubMed] [Google Scholar]
  28. Watanabe N., Arase H., Kurasawa K., Iwamoto I., Kayagaki N., Yagita H., Okumura K., Miyatake S., Saito T. Th1 and Th2 subsets equally undergo Fas-dependent and -independent activation-induced cell death. Eur J Immunol. 1997 Aug;27(8):1858–1864. doi: 10.1002/eji.1830270807. [DOI] [PubMed] [Google Scholar]
  29. Yoshie O., Imai T., Nomiyama H. Novel lymphocyte-specific CC chemokines and their receptors. J Leukoc Biol. 1997 Nov;62(5):634–644. doi: 10.1002/jlb.62.5.634. [DOI] [PubMed] [Google Scholar]
  30. Zhang Y., Mukaida N., Wang J., Harada A., Akiyama M., Matsushima K. Induction of dendritic cell differentiation by granulocyte-macrophage colony-stimulating factor, stem cell factor, and tumor necrosis factor alpha in vitro from lineage phenotypes-negative c-kit+ murine hematopoietic progenitor cells. Blood. 1997 Dec 15;90(12):4842–4853. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES