Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):1951–1960. doi: 10.1172/JCI3729

Dysregulated hematopoiesis and a progressive neurological disorder induced by expression of an activated form of the human common beta chain in transgenic mice.

R J D'Andrea 1, D Harrison-Findik 1, C M Butcher 1, J Finnie 1, P Blumbergs 1, P Bartley 1, M McCormack 1, K Jones 1, R Rowland 1, T J Gonda 1, M A Vadas 1
PMCID: PMC509147  PMID: 9835620

Abstract

Previously we described activating mutations of hbetac, the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, hbetacFIDelta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the hbetacFIDelta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in hbetac may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic hbetac activation has the potential to contribute to pathological events in the central nervous system.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson J. W., Fialkow P. J., Murphy S., Prchal J. F., Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med. 1976 Oct 21;295(17):913–916. doi: 10.1056/NEJM197610212951702. [DOI] [PubMed] [Google Scholar]
  2. Adamson J. W., Fialkow P. J. The pathogenesis of myeloproliferative syndromes. Br J Haematol. 1978 Mar;38(3):299–303. doi: 10.1111/j.1365-2141.1978.tb01048.x. [DOI] [PubMed] [Google Scholar]
  3. Appel K., Buttini M., Sauter A., Gebicke-Haerter P. J. Cloning of rat interleukin-3 receptor beta-subunit from cultured microglia and its mRNA expression in vivo. J Neurosci. 1995 Aug;15(8):5800–5809. doi: 10.1523/JNEUROSCI.15-08-05800.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arai K. I., Lee F., Miyajima A., Miyatake S., Arai N., Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem. 1990;59:783–836. doi: 10.1146/annurev.bi.59.070190.004031. [DOI] [PubMed] [Google Scholar]
  5. Bagley C. J., Woodcock J. M., Stomski F. C., Lopez A. F. The structural and functional basis of cytokine receptor activation: lessons from the common beta subunit of the granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 receptors. Blood. 1997 Mar 1;89(5):1471–1482. [PubMed] [Google Scholar]
  6. Ballas Z. K., Rasmussen W. Lymphokine-activated killer cells. VII. IL-4 induces an NK1.1+CD8 alpha+beta- TCR-alpha beta B220+ lymphokine-activated killer subset. J Immunol. 1993 Jan 1;150(1):17–30. [PubMed] [Google Scholar]
  7. Banati R. B., Gehrmann J., Schubert P., Kreutzberg G. W. Cytotoxicity of microglia. Glia. 1993 Jan;7(1):111–118. doi: 10.1002/glia.440070117. [DOI] [PubMed] [Google Scholar]
  8. Blumbergs P. C., Scott G., Manavis J., Wainwright H., Simpson D. A., McLean A. J. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet. 1994 Oct 15;344(8929):1055–1056. doi: 10.1016/s0140-6736(94)91712-4. [DOI] [PubMed] [Google Scholar]
  9. Burgess A. W., Camakaris J., Metcalf D. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem. 1977 Mar 25;252(6):1998–2003. [PubMed] [Google Scholar]
  10. Burke F., Naylor M. S., Davies B., Balkwill F. The cytokine wall chart. Immunol Today. 1993 Apr;14(4):165–170. doi: 10.1016/0167-5699(93)90280-x. [DOI] [PubMed] [Google Scholar]
  11. Chiang C. S., Powell H. C., Gold L. H., Samimi A., Campbell I. L. Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. J Clin Invest. 1996 Mar 15;97(6):1512–1524. doi: 10.1172/JCI118574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chin H., Wakao H., Miyajima A., Kamiyama R., Miyasaka N., Miura O. Erythropoietin induces tyrosine phosphorylation of the interleukin-3 receptor beta subunit (betaIL3) and recruitment of Stat5 to possible Stat5-docking sites in betaIL3. Blood. 1997 Jun 15;89(12):4327–4336. [PubMed] [Google Scholar]
  13. Coffman R. L. Surface antigen expression and immunoglobulin gene rearrangement during mouse pre-B cell development. Immunol Rev. 1982;69:5–23. doi: 10.1111/j.1600-065x.1983.tb00446.x. [DOI] [PubMed] [Google Scholar]
  14. Correa P. N., Eskinazi D., Axelrad A. A. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium. Blood. 1994 Jan 1;83(1):99–112. [PubMed] [Google Scholar]
  15. D'Andrea R. J., Barry S. C., Moretti P. A., Jones K., Ellis S., Vadas M. A., Goodall G. J. Extracellular truncations of h beta c, the common signaling subunit for interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5, lead to ligand-independent activation. Blood. 1996 Apr 1;87(7):2641–2648. [PubMed] [Google Scholar]
  16. D'Andrea R., Rayner J., Moretti P., Lopez A., Goodall G. J., Gonda T. J., Vadas M. A mutation of the common receptor subunit for interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor, and IL-5 that leads to ligand independence and tumorigenicity. Blood. 1994 May 15;83(10):2802–2808. [PubMed] [Google Scholar]
  17. Dai C. H., Krantz S. B., Dessypris E. N., Means R. T., Jr, Horn S. T., Gilbert H. S. Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood. 1992 Aug 15;80(4):891–899. [PubMed] [Google Scholar]
  18. Dai C. H., Krantz S. B., Green W. F., Gilbert H. S. Polycythaemia vera. III. Burst-forming units-erythroid (BFU-E) response to stem cell factor and c-kit receptor expression. Br J Haematol. 1994 Jan;86(1):12–21. doi: 10.1111/j.1365-2141.1994.tb03246.x. [DOI] [PubMed] [Google Scholar]
  19. Dai C. H., Krantz S. B., Means R. T., Jr, Horn S. T., Gilbert H. S. Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest. 1991 Feb;87(2):391–396. doi: 10.1172/JCI115009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Emanuel P. D., Eaves C. J., Broudy V. C., Papayannopoulou T., Moore M. R., D'Andrea A. D., Prchal J. F., Eaves A. C., Prchal J. T. Familial and congenital polycythemia in three unrelated families. Blood. 1992 Jun 1;79(11):3019–3030. [PubMed] [Google Scholar]
  21. Frendl G., Beller D. I. Regulation of macrophage activation by IL-3. I. IL-3 functions as a macrophage-activating factor with unique properties, inducing Ia and lymphocyte function-associated antigen-1 but not cytotoxicity. J Immunol. 1990 May 1;144(9):3392–3399. [PubMed] [Google Scholar]
  22. Frendl G. Interleukin 3: from colony-stimulating factor to pluripotent immunoregulatory cytokine. Int J Immunopharmacol. 1992 Apr;14(3):421–430. doi: 10.1016/0192-0561(92)90172-h. [DOI] [PubMed] [Google Scholar]
  23. Gebicke-Haerter P. J., Appel K., Taylor G. D., Schobert A., Rich I. N., Northoff H., Berger M. Rat microglial interleukin-3. J Neuroimmunol. 1994 Mar;50(2):203–214. doi: 10.1016/0165-5728(94)90047-7. [DOI] [PubMed] [Google Scholar]
  24. Gonda T. J., D'Andrea R. J. Activating mutations in cytokine receptors: implications for receptor function and role in disease. Blood. 1997 Jan 15;89(2):355–369. [PubMed] [Google Scholar]
  25. Goodall G. J., Bagley C. J., Vadas M. A., Lopez A. F. A model for the interaction of the GM-CSF, IL-3 and IL-5 receptors with their ligands. Growth Factors. 1993;8(2):87–97. doi: 10.3109/08977199309046929. [DOI] [PubMed] [Google Scholar]
  26. Hanazono Y., Sasaki K., Nitta H., Yazaki Y., Hirai H. Erythropoietin induces tyrosine phosphorylation of the beta chain of the GM-CSF receptor. Biochem Biophys Res Commun. 1995 Mar 28;208(3):1060–1066. doi: 10.1006/bbrc.1995.1442. [DOI] [PubMed] [Google Scholar]
  27. Hess G., Rose P., Gamm H., Papadileris S., Huber C., Seliger B. Molecular analysis of the erythropoietin receptor system in patients with polycythaemia vera. Br J Haematol. 1994 Dec;88(4):794–802. doi: 10.1111/j.1365-2141.1994.tb05119.x. [DOI] [PubMed] [Google Scholar]
  28. Hestdal K., Ruscetti F. W., Ihle J. N., Jacobsen S. E., Dubois C. M., Kopp W. C., Longo D. L., Keller J. R. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol. 1991 Jul 1;147(1):22–28. [PubMed] [Google Scholar]
  29. Holmes K. L., Langdon W. Y., Fredrickson T. N., Coffman R. L., Hoffman P. M., Hartley J. W., Morse H. C., 3rd Analysis of neoplasms induced by Cas-Br-M MuLV tumor extracts. J Immunol. 1986 Jul 15;137(2):679–688. [PubMed] [Google Scholar]
  30. Ikuta K., Kina T., MacNeil I., Uchida N., Peault B., Chien Y. H., Weissman I. L. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell. 1990 Sep 7;62(5):863–874. doi: 10.1016/0092-8674(90)90262-d. [DOI] [PubMed] [Google Scholar]
  31. Jenkins B. J., D'Andrea R., Gonda T. J. Activating point mutations in the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors suggest the involvement of beta subunit dimerization and cell type-specific molecules in signalling. EMBO J. 1995 Sep 1;14(17):4276–4287. doi: 10.1002/j.1460-2075.1995.tb00102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jubinsky P. T., Krijanovski O. I., Nathan D. G., Tavernier J., Sieff C. A. The beta chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood. 1997 Sep 1;90(5):1867–1873. [PubMed] [Google Scholar]
  33. Khew-Goodall Y., Butcher C. M., Litwin M. S., Newlands S., Korpelainen E. I., Noack L. M., Berndt M. C., Lopez A. F., Gamble J. R., Vadas M. A. Chronic expression of P-selectin on endothelial cells stimulated by the T-cell cytokine, interleukin-3. Blood. 1996 Feb 15;87(4):1432–1438. [PubMed] [Google Scholar]
  34. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  35. Ling E. A., Wong W. C. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia. 1993 Jan;7(1):9–18. doi: 10.1002/glia.440070105. [DOI] [PubMed] [Google Scholar]
  36. Longmore G. D., Lodish H. F. An activating mutation in the murine erythropoietin receptor induces erythroleukemia in mice: a cytokine receptor superfamily oncogene. Cell. 1991 Dec 20;67(6):1089–1102. doi: 10.1016/0092-8674(91)90286-8. [DOI] [PubMed] [Google Scholar]
  37. Longmore G. D., Pharr P., Neumann D., Lodish H. F. Both megakaryocytopoiesis and erythropoiesis are induced in mice infected with a retrovirus expressing an oncogenic erythropoietin receptor. Blood. 1993 Oct 15;82(8):2386–2395. [PubMed] [Google Scholar]
  38. Lopez A. F., Sanderson C. J., Gamble J. R., Campbell H. D., Young I. G., Vadas M. A. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med. 1988 Jan 1;167(1):219–224. doi: 10.1084/jem.167.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lopez A. F., To L. B., Yang Y. C., Gamble J. R., Shannon M. F., Burns G. F., Dyson P. G., Juttner C. A., Clark S., Vadas M. A. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci U S A. 1987 May;84(9):2761–2765. doi: 10.1073/pnas.84.9.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McBurney M. W., Sutherland L. C., Adra C. N., Leclair B., Rudnicki M. A., Jardine K. The mouse Pgk-1 gene promoter contains an upstream activator sequence. Nucleic Acids Res. 1991 Oct 25;19(20):5755–5761. doi: 10.1093/nar/19.20.5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McCormack M. P., Gonda T. J. Expression of activated mutants of the human interleukin-3/interleukin-5/granulocyte-macrophage colony-stimulating factor receptor common beta subunit in primary hematopoietic cells induces factor-independent proliferation and differentiation. Blood. 1997 Aug 15;90(4):1471–1481. [PubMed] [Google Scholar]
  42. Metcalf D., Begley C. G., Johnson G. R., Nicola N. A., Lopez A. F., Williamson D. J. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood. 1986 Jul;68(1):46–57. [PubMed] [Google Scholar]
  43. Metcalf D., Begley C. G., Williamson D. J., Nice E. C., De Lamarter J., Mermod J. J., Thatcher D., Schmidt A. Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp Hematol. 1987 Jan;15(1):1–9. [PubMed] [Google Scholar]
  44. Metcalf D., Burgess A. W., Johnson G. R., Nicola N. A., Nice E. C., DeLamarter J., Thatcher D. R., Mermod J. J. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. J Cell Physiol. 1986 Sep;128(3):421–431. doi: 10.1002/jcp.1041280311. [DOI] [PubMed] [Google Scholar]
  45. Mirza A. M., Correa P. N., Axelrad A. A. Increased basal and induced tyrosine phosphorylation of the insulin-like growth factor I receptor beta subunit in circulating mononuclear cells of patients with polycythemia vera. Blood. 1995 Aug 1;86(3):877–882. [PubMed] [Google Scholar]
  46. Miyajima A., Kitamura T., Harada N., Yokota T., Arai K. Cytokine receptors and signal transduction. Annu Rev Immunol. 1992;10:295–331. doi: 10.1146/annurev.iy.10.040192.001455. [DOI] [PubMed] [Google Scholar]
  47. Miyajima A., Mui A. L., Ogorochi T., Sakamaki K. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood. 1993 Oct 1;82(7):1960–1974. [PubMed] [Google Scholar]
  48. Mui A. L., Miyajima A. Cytokine receptors and signal transduction. Prog Growth Factor Res. 1994;5(1):15–35. doi: 10.1016/0955-2235(94)90015-9. [DOI] [PubMed] [Google Scholar]
  49. Nishijima I., Nakahata T., Watanabe S., Tsuji K., Tanaka I., Hirabayashi Y., Inoue T., Arai K. Hematopoietic and lymphopoietic responses in human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor transgenic mice injected with human GM-CSF. Blood. 1997 Aug 1;90(3):1031–1038. [PubMed] [Google Scholar]
  50. Nishinakamura R., Nakayama N., Hirabayashi Y., Inoue T., Aud D., McNeil T., Azuma S., Yoshida S., Toyoda Y., Arai K. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity. 1995 Mar;2(3):211–222. doi: 10.1016/1074-7613(95)90046-2. [DOI] [PubMed] [Google Scholar]
  51. Ogawa M., Matsuzaki Y., Nishikawa S., Hayashi S., Kunisada T., Sudo T., Kina T., Nakauchi H., Nishikawa S. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med. 1991 Jul 1;174(1):63–71. doi: 10.1084/jem.174.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ooi J., Tojo A., Asano S., Sato Y., Oka Y. Thrombopoietin induces tyrosine phosphorylation of a common beta subunit of GM-CSF receptor and its association with Stat5 in TF-1/TPO cells. Biochem Biophys Res Commun. 1998 May 8;246(1):132–136. doi: 10.1006/bbrc.1998.8588. [DOI] [PubMed] [Google Scholar]
  53. Pan C. X., Fukunaga R., Yonehara S., Nagata S. Unidirectional cross-phosphorylation between the granulocyte colony-stimulating factor and interleukin 3 receptors. J Biol Chem. 1993 Dec 5;268(34):25818–25823. [PubMed] [Google Scholar]
  54. Pharr P. N., Hankins D., Hofbauer A., Lodish H. F., Longmore G. D. Expression of a constitutively active erythropoietin receptor in primary hematopoietic progenitors abrogates erythropoietin dependence and enhances erythroid colony-forming unit, erythroid burst-forming unit, and granulocyte/macrophage progenitor growth. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):938–942. doi: 10.1073/pnas.90.3.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sanderson C. J. Interleukin-5, eosinophils, and disease. Blood. 1992 Jun 15;79(12):3101–3109. [PubMed] [Google Scholar]
  56. Sato N., Caux C., Kitamura T., Watanabe Y., Arai K., Banchereau J., Miyajima A. Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells. Blood. 1993 Aug 1;82(3):752–761. [PubMed] [Google Scholar]
  57. Schrader J. W. The panspecific hemopoietin of activated T lymphocytes (interleukin-3). Annu Rev Immunol. 1986;4:205–230. doi: 10.1146/annurev.iy.04.040186.001225. [DOI] [PubMed] [Google Scholar]
  58. Stanley E., Lieschke G. J., Grail D., Metcalf D., Hodgson G., Gall J. A., Maher D. W., Cebon J., Sinickas V., Dunn A. R. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5592–5596. doi: 10.1073/pnas.91.12.5592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Stomski F. C., Sun Q., Bagley C. J., Woodcock J., Goodall G., Andrews R. K., Berndt M. C., Lopez A. F. Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor alpha- and beta-chain heterodimerization, which is required for receptor activation but not high-affinity binding. Mol Cell Biol. 1996 Jun;16(6):3035–3046. doi: 10.1128/mcb.16.6.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Takagi M., Hara T., Ichihara M., Takatsu K., Miyajima A. Multi-colony stimulating activity of interleukin 5 (IL-5) on hematopoietic progenitors from transgenic mice that express IL-5 receptor alpha subunit constitutively. J Exp Med. 1995 Mar 1;181(3):889–899. doi: 10.1084/jem.181.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Testa U., Pelosi E., Gabbianelli M., Fossati C., Campisi S., Isacchi G., Peschle C. Cascade transactivation of growth factor receptors in early human hematopoiesis. Blood. 1993 Mar 15;81(6):1442–1456. [PubMed] [Google Scholar]
  62. Thach W. T., Goodkin H. P., Keating J. G. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–442. doi: 10.1146/annurev.ne.15.030192.002155. [DOI] [PubMed] [Google Scholar]
  63. Vadas M. A., López A. F. Regulation of granulocyte function by colony stimulating factors. Lymphokine Res. 1984;3(2):45–50. [PubMed] [Google Scholar]
  64. Weinberg R. S., Worsley A., Gilbert H. S., Cuttner J., Berk P. D., Alter B. P. Comparison of erythroid progenitor cell growth in vitro in polycythemia vera and chronic myelogenous leukemia: only polycythemia vera has endogenous colonies. Leuk Res. 1989;13(4):331–338. doi: 10.1016/0145-2126(89)90070-2. [DOI] [PubMed] [Google Scholar]
  65. Wells J. A., de Vos A. M. Hematopoietic receptor complexes. Annu Rev Biochem. 1996;65:609–634. doi: 10.1146/annurev.bi.65.070196.003141. [DOI] [PubMed] [Google Scholar]
  66. Woodcock J. M., Bagley C. J., Zacharakis B., Lopez A. F. A single tyrosine residue in the membrane-proximal domain of the granulocyte-macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 receptor common beta-chain is necessary and sufficient for high affinity binding and signaling by all three ligands. J Biol Chem. 1996 Oct 18;271(42):25999–26006. doi: 10.1074/jbc.271.42.25999. [DOI] [PubMed] [Google Scholar]
  67. Yasuda Y., Nishijima I., Watanabe S., Arai K., Zlotnik A., Moore T. A. Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) induces inhibition of intrathymic T-cell development in hGM-CSF receptor transgenic mice. Blood. 1997 Feb 15;89(4):1349–1356. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES