Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):2002–2010. doi: 10.1172/JCI2881

In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1.

L Guedez 1, W G Stetler-Stevenson 1, L Wolff 1, J Wang 1, P Fukushima 1, A Mansoor 1, M Stetler-Stevenson 1
PMCID: PMC509153  PMID: 9835626

Abstract

Cellular pathways for induction of programmed cell death (PCD) have been identified, but little is known about specific extracellular matrix processes that may affect apoptosis along those pathways. In this study, a series of Burkitt's lymphoma (BL) cell lines were assayed for their expression of tissue inhibitor of metalloproteinases (TIMP)-1. Results indicate that TIMP-1-positive BL lines show resistance to cold-shock-induced apoptosis. Furthermore, recombinant TIMP-1, but not TIMP-2 or a synthetic metalloproteinase inhibitor (BB-94), confers resistance to apoptosis induced by both CD95-dependent and -independent (cold shock, serum deprivation, and gamma-radiation) pathways in TIMP-1-negative BL lines. TIMP-1 suppression of PCD is not due to metalloproteinase inhibition, as reduction and alkylation of the TIMP-1 did not abolish this activity. Retroviral induction of TIMP-1 not only resulted in cell survival but also in continued DNA synthesis for up to 5 d in the absence of serum, while controls underwent apoptosis. This resistance to apoptosis is reversed by anti-TIMP-1 antibodies, demonstrating that secreted TIMP-1 is active in blocking apoptosis. Furthermore, TIMP-1 upregulation induced expression of Bcl-XL but not Bcl-2 as well as decreased NF-kappaB activity as compared with controls. These results demonstrate that TIMP-1 suppresses apoptosis in B cells and suggests a novel activity for TIMP-1 in tissue homeostasis.

Full Text

The Full Text of this article is available as a PDF (375.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. M., Howard E. W., Bissell M. J., Werb Z. Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J Cell Biol. 1996 Dec;135(6 Pt 1):1669–1677. doi: 10.1083/jcb.135.6.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anwar N., Kingma D. W., Bloch A. R., Mourad M., Raffeld M., Franklin J., Magrath I., el Bolkainy N., Jaffe E. S. The investigation of Epstein-Barr viral sequences in 41 cases of Burkitt's lymphoma from Egypt: epidemiologic correlations. Cancer. 1995 Oct 1;76(7):1245–1252. doi: 10.1002/1097-0142(19951001)76:7<1245::aid-cncr2820760723>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  3. Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
  4. Baker A. H., Zaltsman A. B., George S. J., Newby A. C. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest. 1998 Mar 15;101(6):1478–1487. doi: 10.1172/JCI1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker S. J., Reddy E. P. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene. 1996 Jan 4;12(1):1–9. [PubMed] [Google Scholar]
  6. Bertaux B., Hornebeck W., Eisen A. Z., Dubertret L. Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol. 1991 Oct;97(4):679–685. doi: 10.1111/1523-1747.ep12483956. [DOI] [PubMed] [Google Scholar]
  7. Bhatia K., Fan S., Spangler G., Weintraub M., O'Connor P. M., Judde J. G., Magrath I. A mutant p21 cyclin-dependent kinase inhibitor isolated from a Burkitt's lymphoma. Cancer Res. 1995 Apr 1;55(7):1431–1435. [PubMed] [Google Scholar]
  8. Bodrug S. E., Aimé-Sempé C., Sato T., Krajewski S., Hanada M., Reed J. C. Biochemical and functional comparisons of Mcl-1 and Bcl-2 proteins: evidence for a novel mechanism of regulating Bcl-2 family protein function. Cell Death Differ. 1995 Jul;2(3):173–182. [PubMed] [Google Scholar]
  9. Boudreau N., Sympson C. J., Werb Z., Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995 Feb 10;267(5199):891–893. doi: 10.1126/science.7531366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chesler L., Golde D. W., Bersch N., Johnson M. D. Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1. Blood. 1995 Dec 15;86(12):4506–4515. [PubMed] [Google Scholar]
  11. Chiu V. K., Walsh C. M., Liu C. C., Reed J. C., Clark W. R. Bcl-2 blocks degranulation but not fas-based cell-mediated cytotoxicity. J Immunol. 1995 Mar 1;154(5):2023–2032. [PubMed] [Google Scholar]
  12. Cohen J. J. Programmed cell death in the immune system. Adv Immunol. 1991;50:55–85. doi: 10.1016/s0065-2776(08)60822-6. [DOI] [PubMed] [Google Scholar]
  13. Di Girolamo N., Tedla N., Lloyd A., Wakefield D. Expression of matrix metalloproteinases by human plasma cells and B lymphocytes. Eur J Immunol. 1998 Jun;28(6):1773–1784. doi: 10.1002/(SICI)1521-4141(199806)28:06<1773::AID-IMMU1773>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  14. Dive C., Gregory C. D., Phipps D. J., Evans D. L., Milner A. E., Wyllie A. H. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta. 1992 Feb 3;1133(3):275–285. doi: 10.1016/0167-4889(92)90048-g. [DOI] [PubMed] [Google Scholar]
  15. Fong K. M., Kida Y., Zimmerman P. V., Smith P. J. TIMP1 and adverse prognosis in non-small cell lung cancer. Clin Cancer Res. 1996 Aug;2(8):1369–1372. [PubMed] [Google Scholar]
  16. Gaidano G., Ballerini P., Gong J. Z., Inghirami G., Neri A., Newcomb E. W., Magrath I. T., Knowles D. M., Dalla-Favera R. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5413–5417. doi: 10.1073/pnas.88.12.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gregory C. D., Milner A. E. Regulation of cell survival in Burkitt lymphoma: implications from studies of apoptosis following cold-shock treatment. Int J Cancer. 1994 May 1;57(3):419–426. doi: 10.1002/ijc.2910570321. [DOI] [PubMed] [Google Scholar]
  18. Guedez L., Lim M. S., Stetler-Stevenson W. G. The role of metalloproteinases and their inhibitors in hematological disorders. Crit Rev Oncog. 1996;7(3-4):205–225. doi: 10.1615/critrevoncog.v7.i3-4.40. [DOI] [PubMed] [Google Scholar]
  19. Guedez L., Zucali J. Bleomycin-induced differentiation of bcl-2-transfected U937 leukemia cells. Cell Growth Differ. 1996 Dec;7(12):1625–1631. [PubMed] [Google Scholar]
  20. Hayakawa T., Yamashita K., Ohuchi E., Shinagawa A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci. 1994 Sep;107(Pt 9):2373–2379. doi: 10.1242/jcs.107.9.2373. [DOI] [PubMed] [Google Scholar]
  21. Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992 Feb 17;298(1):29–32. doi: 10.1016/0014-5793(92)80015-9. [DOI] [PubMed] [Google Scholar]
  22. Henkel T., Machleidt T., Alkalay I., Krönke M., Ben-Neriah Y., Baeuerle P. A. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. doi: 10.1038/365182a0. [DOI] [PubMed] [Google Scholar]
  23. Hsing Y., Hostager B. S., Bishop G. A. Characterization of CD40 signaling determinants regulating nuclear factor-kappa B activation in B lymphocytes. J Immunol. 1997 Nov 15;159(10):4898–4906. [PubMed] [Google Scholar]
  24. Korsmeyer S. J. Bcl-2: an antidote to programmed cell death. Cancer Surv. 1992;15:105–118. [PubMed] [Google Scholar]
  25. Kossakowska A. E., Urbanski S. J., Edwards D. R. Tissue inhibitor of metalloproteinases-1 (TIMP-1) RNA is expressed at elevated levels in malignant non-Hodgkin's lymphomas. Blood. 1991 Jun 1;77(11):2475–2481. [PubMed] [Google Scholar]
  26. Markowitz D., Goff S., Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 1988 Dec;167(2):400–406. [PubMed] [Google Scholar]
  27. McDonnell T. J., Korsmeyer S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature. 1991 Jan 17;349(6306):254–256. doi: 10.1038/349254a0. [DOI] [PubMed] [Google Scholar]
  28. McGeehan G. M., Becherer J. D., Bast R. C., Jr, Boyer C. M., Champion B., Connolly K. M., Conway J. G., Furdon P., Karp S., Kidao S. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 1994 Aug 18;370(6490):558–561. doi: 10.1038/370558a0. [DOI] [PubMed] [Google Scholar]
  29. Memon S. A., Moreno M. B., Petrak D., Zacharchuk C. M. Bcl-2 blocks glucocorticoid- but not Fas- or activation-induced apoptosis in a T cell hybridoma. J Immunol. 1995 Nov 15;155(10):4644–4652. [PubMed] [Google Scholar]
  30. Milner A. E., Johnson G. D., Gregory C. D. Prevention of programmed cell death in Burkitt lymphoma cell lines by bcl-2-dependent and -independent mechanisms. Int J Cancer. 1992 Oct 21;52(4):636–644. doi: 10.1002/ijc.2910520424. [DOI] [PubMed] [Google Scholar]
  31. Mimori K., Mori M., Shiraishi T., Fujie T., Baba K., Haraguchi M., Abe R., Ueo H., Akiyoshi T. Clinical significance of tissue inhibitor of metalloproteinase expression in gastric carcinoma. Br J Cancer. 1997;76(4):531–536. doi: 10.1038/bjc.1997.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Connor P. M., Jackman J., Jondle D., Bhatia K., Magrath I., Kohn K. W. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res. 1993 Oct 15;53(20):4776–4780. [PubMed] [Google Scholar]
  33. Oliver G. W., Leferson J. D., Stetler-Stevenson W. G., Kleiner D. E. Quantitative reverse zymography: analysis of picogram amounts of metalloproteinase inhibitors using gelatinase A and B reverse zymograms. Anal Biochem. 1997 Jan 1;244(1):161–166. doi: 10.1006/abio.1996.9895. [DOI] [PubMed] [Google Scholar]
  34. Ree A. H., Florenes V. A., Berg J. P., Maelandsmo G. M., Nesland J. M., Fodstad O. High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res. 1997 Sep;3(9):1623–1628. [PubMed] [Google Scholar]
  35. Rothstein T. L. Signals and susceptibility to programmed death in b cells. Curr Opin Immunol. 1996 Jun;8(3):362–371. doi: 10.1016/s0952-7915(96)80126-9. [DOI] [PubMed] [Google Scholar]
  36. Schneider T. J., Grillot D., Foote L. C., Núez G. E., Rothstein T. L. Bcl-x protects primary B cells against Fas-mediated apoptosis. J Immunol. 1997 Nov 15;159(10):4834–4839. [PubMed] [Google Scholar]
  37. Stetler-Stevenson M., Mansoor A., Lim M., Fukushima P., Kehrl J., Marti G., Ptaszynski K., Wang J., Stetler-Stevenson W. G. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in reactive and neoplastic lymphoid cells. Blood. 1997 Mar 1;89(5):1708–1715. [PubMed] [Google Scholar]
  38. Stetler-Stevenson W. G., Bersch N., Golde D. W. Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett. 1992 Jan 20;296(2):231–234. doi: 10.1016/0014-5793(92)80386-u. [DOI] [PubMed] [Google Scholar]
  39. Stetler-Stevenson W. G., Brown P. D., Onisto M., Levy A. T., Liotta L. A. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem. 1990 Aug 15;265(23):13933–13938. [PubMed] [Google Scholar]
  40. Strasser A., Harris A. W., Huang D. C., Krammer P. H., Cory S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 1995 Dec 15;14(24):6136–6147. doi: 10.1002/j.1460-2075.1995.tb00304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strasser A. Life and death during lymphocyte development and function: evidence for two distinct killing mechanisms. Curr Opin Immunol. 1995 Apr;7(2):228–234. doi: 10.1016/0952-7915(95)80007-7. [DOI] [PubMed] [Google Scholar]
  42. Tanaka M., Suda T., Haze K., Nakamura N., Sato K., Kimura F., Motoyoshi K., Mizuki M., Tagawa S., Ohga S. Fas ligand in human serum. Nat Med. 1996 Mar;2(3):317–322. doi: 10.1038/nm0396-317. [DOI] [PubMed] [Google Scholar]
  43. Valente P., Fassina G., Melchiori A., Masiello L., Cilli M., Vacca A., Onisto M., Santi L., Stetler-Stevenson W. G., Albini A. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer. 1998 Jan 19;75(2):246–253. doi: 10.1002/(sici)1097-0215(19980119)75:2<246::aid-ijc13>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  44. Wu R. C., Schönthal A. H. Activation of p53-p21waf1 pathway in response to disruption of cell-matrix interactions. J Biol Chem. 1997 Nov 14;272(46):29091–29098. doi: 10.1074/jbc.272.46.29091. [DOI] [PubMed] [Google Scholar]
  45. Zeng Z. S., Cohen A. M., Zhang Z. F., Stetler-Stevenson W., Guillem J. G. Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res. 1995 Aug;1(8):899–906. [PubMed] [Google Scholar]
  46. Zhou W., Sokoll L. J., Bruzek D. J., Zhang L., Velculescu V. E., Goldin S. B., Hruban R. H., Kern S. E., Hamilton S. R., Chan D. W. Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol Biomarkers Prev. 1998 Feb;7(2):109–112. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES