Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 1;102(11):2011–2018. doi: 10.1172/JCI4179

hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions.

D Merlin 1, A Steel 1, A T Gewirtz 1, M Si-Tahar 1, M A Hediger 1, J L Madara 1
PMCID: PMC509154  PMID: 9835627

Abstract

Intestinal epithelial cells express hPepT1, an apical transporter responsible for the uptake of a broad array of small peptides. As these could conceivably include n-formyl peptides, we examined whether hPepT1 could transport the model n-formylated peptide fMLP and, if so, whether such cellular uptake of fMLP influenced neutrophil-epithelial interactions. fMLP uptake into oocytes was enhanced by hPepT1 expression. In addition, fMLP competitively inhibited uptake of a known hPepT1 substrate (glycylsarcosine) in hPepT1 expressing oocytes. hPepT1 peptide uptake was further examined in a polarized human intestinal epithelial cell line (Caco2-BBE) known to express this transporter. Epithelial monolayers internalized apical fMLP in a fashion that was competitively inhibited by other hPepT1 recognized solutes, but not by related solutes that were not transported by hPepT1. Fluorescence analyses of intracellular pH revealed that fMLP uptake was accompanied by cytosolic acidification, consistent with the known function of hPepT1 as a peptide H+ cotransporter. Lumenal fMLP resulted in directed movement of neutrophils across epithelial monolayers. Solutes that inhibit hPepT1-mediated fMLP transport decreased neutrophil transmigration by approximately 50%. Conversely, conditions that enhanced the rate of hPepT1-mediated fMLP uptake (cytosolic acidification) enhanced neutrophil-transepithelial migration by approximately 70%. We conclude that hPepT1 transports fMLP and uptake of these peptide influences neutrophil-epithelial interactions. These data (a) emphasize the importance of hPepT1 in mediating intestinal inflammation, (b) raise the possibility that modulating hPepT1 activity could influence states of intestinal inflammation, and (c) provide the first evidence of a link between active transepithelial transport and neutrophil-epithelial interactions.

Full Text

The Full Text of this article is available as a PDF (293.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adibi S. A. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology. 1997 Jul;113(1):332–340. doi: 10.1016/s0016-5085(97)70112-4. [DOI] [PubMed] [Google Scholar]
  2. Augeron C., Laboisse C. L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 1984 Sep;44(9):3961–3969. [PubMed] [Google Scholar]
  3. Bommakanti R. K., Bokoch G. M., Tolley J. O., Schreiber R. E., Siemsen D. W., Klotz K. N., Jesaitis A. J. Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein. Inhibition by pertussis toxin-catalyzed ADP ribosylation. J Biol Chem. 1992 Apr 15;267(11):7576–7581. [PubMed] [Google Scholar]
  4. Boyarsky G., Hanssen C., Clyne L. A. Superiority of in vitro over in vivo calibrations of BCECF in vascular smooth muscle cells. FASEB J. 1996 Aug;10(10):1205–1212. doi: 10.1096/fasebj.10.10.8751723. [DOI] [PubMed] [Google Scholar]
  5. Chadwick V. S., Mellor D. M., Myers D. B., Selden A. C., Keshavarzian A., Broom M. F., Hobson C. H. Production of peptides inducing chemotaxis and lysosomal enzyme release in human neutrophils by intestinal bacteria in vitro and in vivo. Scand J Gastroenterol. 1988 Jan;23(1):121–128. doi: 10.3109/00365528809093861. [DOI] [PubMed] [Google Scholar]
  6. Colgan S. P., Morales V. M., Madara J. L., Polischuk J. E., Balk S. P., Blumberg R. S. IFN-gamma modulates CD1d surface expression on intestinal epithelia. Am J Physiol. 1996 Jul;271(1 Pt 1):C276–C283. doi: 10.1152/ajpcell.1996.271.1.C276. [DOI] [PubMed] [Google Scholar]
  7. Dantzig A. H., Hoskins J. A., Tabas L. B., Bright S., Shepard R. L., Jenkins I. L., Duckworth D. C., Sportsman J. R., Mackensen D., Rosteck P. R., Jr Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science. 1994 Apr 15;264(5157):430–433. doi: 10.1126/science.8153632. [DOI] [PubMed] [Google Scholar]
  8. Dharmsathaphorn K., Madara J. L. Established intestinal cell lines as model systems for electrolyte transport studies. Methods Enzymol. 1990;192:354–389. doi: 10.1016/0076-6879(90)92082-o. [DOI] [PubMed] [Google Scholar]
  9. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  10. Ganapathy M. E., Brandsch M., Prasad P. D., Ganapathy V., Leibach F. H. Differential recognition of beta -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem. 1995 Oct 27;270(43):25672–25677. doi: 10.1074/jbc.270.43.25672. [DOI] [PubMed] [Google Scholar]
  11. Ganapathy M. E., Prasad P. D., Mackenzie B., Ganapathy V., Leibach F. H. Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2. Biochim Biophys Acta. 1997 Mar 13;1324(2):296–308. doi: 10.1016/s0005-2736(96)00234-9. [DOI] [PubMed] [Google Scholar]
  12. Jung H. C., Eckmann L., Yang S. K., Panja A., Fierer J., Morzycka-Wroblewska E., Kagnoff M. F. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995 Jan;95(1):55–65. doi: 10.1172/JCI117676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liang R., Fei Y. J., Prasad P. D., Ramamoorthy S., Han H., Yang-Feng T. L., Hediger M. A., Ganapathy V., Leibach F. H. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem. 1995 Mar 24;270(12):6456–6463. doi: 10.1074/jbc.270.12.6456. [DOI] [PubMed] [Google Scholar]
  14. Mackenzie B., Fei Y. J., Ganapathy V., Leibach F. H. The human intestinal H+/oligopeptide cotransporter hPEPT1 transports differently-charged dipeptides with identical electrogenic properties. Biochim Biophys Acta. 1996 Oct 23;1284(2):125–128. doi: 10.1016/s0005-2736(96)00170-8. [DOI] [PubMed] [Google Scholar]
  15. Madara J. L., Carlson S., Anderson J. M. ZO-1 maintains its spatial distribution but dissociates from junctional fibrils during tight junction regulation. Am J Physiol. 1993 May;264(5 Pt 1):C1096–C1101. doi: 10.1152/ajpcell.1993.264.5.C1096. [DOI] [PubMed] [Google Scholar]
  16. Madara J. L., Patapoff T. W., Gillece-Castro B., Colgan S. P., Parkos C. A., Delp C., Mrsny R. J. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest. 1993 May;91(5):2320–2325. doi: 10.1172/JCI116462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marasco W. A., Phan S. H., Krutzsch H., Showell H. J., Feltner D. E., Nairn R., Becker E. L., Ward P. A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed] [Google Scholar]
  18. McCormick B. A., Colgan S. P., Delp-Archer C., Miller S. I., Madara J. L. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol. 1993 Nov;123(4):895–907. doi: 10.1083/jcb.123.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCormick B. A., Hofman P. M., Kim J., Carnes D. K., Miller S. I., Madara J. L. Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J Cell Biol. 1995 Dec;131(6 Pt 1):1599–1608. doi: 10.1083/jcb.131.6.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCormick B. A., Parkos C. A., Colgan S. P., Carnes D. K., Madara J. L. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol. 1998 Jan 1;160(1):455–466. [PubMed] [Google Scholar]
  21. Merlin D., Guo X., Martin K., Laboisse C., Landis D., Dubyak G., Hopfer U. Recruitment of purinergically stimulated Cl- channels from granule membrane to plasma membrane. Am J Physiol. 1996 Aug;271(2 Pt 1):C612–C619. doi: 10.1152/ajpcell.1996.271.2.C612. [DOI] [PubMed] [Google Scholar]
  22. Mooseker M. S. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1:209–241. doi: 10.1146/annurev.cb.01.110185.001233. [DOI] [PubMed] [Google Scholar]
  23. Murphy P. M. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593–633. doi: 10.1146/annurev.iy.12.040194.003113. [DOI] [PubMed] [Google Scholar]
  24. Nash S., Stafford J., Madara J. L. Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest. 1987 Oct;80(4):1104–1113. doi: 10.1172/JCI113167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nussberger S., Steel A., Trotti D., Romero M. F., Boron W. F., Hediger M. A. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J Biol Chem. 1997 Mar 21;272(12):7777–7785. doi: 10.1074/jbc.272.12.7777. [DOI] [PubMed] [Google Scholar]
  26. Parkos C. A., Colgan S. P., Diamond M. S., Nusrat A., Liang T. W., Springer T. A., Madara J. L. Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/CD18-mediated interactions with neutrophils. Mol Med. 1996 Jul;2(4):489–505. [PMC free article] [PubMed] [Google Scholar]
  27. Parkos C. A., Delp C., Arnaout M. A., Madara J. L. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J Clin Invest. 1991 Nov;88(5):1605–1612. doi: 10.1172/JCI115473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saito H., Inui K. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am J Physiol. 1993 Aug;265(2 Pt 1):G289–G294. doi: 10.1152/ajpgi.1993.265.2.G289. [DOI] [PubMed] [Google Scholar]
  29. Steel A., Nussberger S., Romero M. F., Boron W. F., Boyd C. A., Hediger M. A. Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1. J Physiol. 1997 Feb 1;498(Pt 3):563–569. doi: 10.1113/jphysiol.1997.sp021883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thwaites D. T., Hirst B. H., Simmons N. L. Direct assessment of dipeptide/H+ symport in intact human intestinal (Caco-2) epithelium: a novel method utilising continuous intracellular pH measurement. Biochem Biophys Res Commun. 1993 Jul 15;194(1):432–438. doi: 10.1006/bbrc.1993.1838. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES