Abstract
HIV-infected patients suffer several renal syndromes, which can progress rapidly from renal insufficiency to end-stage renal disease. Histologically, HIV-induced nephropathy is characterized by prominent tubulopathy with apoptosis of tubular cells. Clinical and experimental evidence suggests that renal injury may be directly related to virus infection. Although HIV-1 is a polytropic and not solely lymphotropic pathogen, the susceptibility of renal cells to HIV-1 remains to be determined. This paper demonstrates in vitro the permissiveness of proximal tubular epithelial cells (PTEC) to HIV-1 and describes the effects of PTEC infection to explain the pathogenesis of tubular damage in vivo. The results indicate that PTEC express HIV-specific receptor and coreceptors and sustain virus replication. We observed that HIV-1 infection causes the death of tubular cells by triggering an apoptotic pathway involving caspase activation. Fas upregulation but not Fas ligand expression was found in the infected PTEC. However, after HIV-1 infection, tubular cells became susceptible to apoptosis induced through Fas stimulation. Caspase inhibition prevented the death of the infected PTEC in spite of persistent viral replication. These findings may explain the prominent histopathology of HIV-associated nephropathy and demonstrate that the apoptosis of nonlymphoid cells can be directly induced by HIV-1.
Full Text
The Full Text of this article is available as a PDF (314.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Accornero P., Radrizzani M., Delia D., Gerosa F., Kurrle R., Colombo M. P. Differential susceptibility to HIV-GP120-sensitized apoptosis in CD4+ T-cell clones with different T-helper phenotypes: role of CD95/CD95L interactions. Blood. 1997 Jan 15;89(2):558–569. [PubMed] [Google Scholar]
- Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
- Alpers C. E., McClure J., Bursten S. L. Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am J Kidney Dis. 1992 Feb;19(2):126–130. doi: 10.1016/s0272-6386(12)70120-8. [DOI] [PubMed] [Google Scholar]
- Ameisen J. C., Estaquier J., Idziorek T., De Bels F. Programmed cell death and AIDS pathogenesis: significance and potential mechanisms. Curr Top Microbiol Immunol. 1995;200:195–211. doi: 10.1007/978-3-642-79437-7_14. [DOI] [PubMed] [Google Scholar]
- Barbiano di Belgiojoso G., Genderini A., Vago L., Parravicini C., Bertoli S., Landriani N. Absence of HIV antigens in renal tissue from patients with HIV-associated nephropathy. Nephrol Dial Transplant. 1990;5(7):489–492. doi: 10.1093/ndt/5.7.489. [DOI] [PubMed] [Google Scholar]
- Biancone L., Martino A. D., Orlandi V., Conaldi P. G., Toniolo A., Camussi G. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J Exp Med. 1997 Jul 7;186(1):147–152. doi: 10.1084/jem.186.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J., Springer T. A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996 Aug 29;382(6594):829–833. doi: 10.1038/382829a0. [DOI] [PubMed] [Google Scholar]
- Boldin M. P., Mett I. L., Varfolomeev E. E., Chumakov I., Shemer-Avni Y., Camonis J. H., Wallach D. Self-association of the "death domains" of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem. 1995 Jan 6;270(1):387–391. doi: 10.1074/jbc.270.1.387. [DOI] [PubMed] [Google Scholar]
- Boonstra J. G., van der Woude F. J., Wever P. C., Laterveer J. C., Daha M. R., van Kooten C. Expression and function of Fas (CD95) on human renal tubular epithelial cells. J Am Soc Nephrol. 1997 Oct;8(10):1517–1524. doi: 10.1681/ASN.V8101517. [DOI] [PubMed] [Google Scholar]
- Bruggeman L. A., Dikman S., Meng C., Quaggin S. E., Coffman T. M., Klotman P. E. Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest. 1997 Jul 1;100(1):84–92. doi: 10.1172/JCI119525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bódi I., Abraham A. A., Kimmel P. L. Apoptosis in human immunodeficiency virus-associated nephropathy. Am J Kidney Dis. 1995 Aug;26(2):286–291. doi: 10.1016/0272-6386(95)90648-7. [DOI] [PubMed] [Google Scholar]
- Chinnaiyan A. M., Woffendin C., Dixit V. M., Nabel G. J. The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nat Med. 1997 Mar;3(3):333–337. doi: 10.1038/nm0397-333. [DOI] [PubMed] [Google Scholar]
- Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 Jun 28;85(7):1135–1148. doi: 10.1016/s0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
- Clement M. V., Stamenkovic I. Fas and tumor necrosis factor receptor-mediated cell death: similarities and distinctions. J Exp Med. 1994 Aug 1;180(2):557–567. doi: 10.1084/jem.180.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen A. H., Sun N. C., Shapshak P., Imagawa D. T. Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod Pathol. 1989 Mar;2(2):125–128. [PubMed] [Google Scholar]
- Conaldi P. G., Biancone L., Bottelli A., De Martino A., Camussi G., Toniolo A. Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells. J Virol. 1997 Dec;71(12):9180–9187. doi: 10.1128/jvi.71.12.9180-9187.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conaldi P. G., Serra C., Dolei A., Basolo F., Falcone V., Mariani G., Speziale P., Toniolo A. Productive HIV-1 infection of human vascular endothelial cells requires cell proliferation and is stimulated by combined treatment with interleukin-1 beta plus tumor necrosis factor-alpha. J Med Virol. 1995 Dec;47(4):355–363. doi: 10.1002/jmv.1890470411. [DOI] [PubMed] [Google Scholar]
- D'Agati V., Appel G. B. HIV infection and the kidney. J Am Soc Nephrol. 1997 Jan;8(1):138–152. doi: 10.1681/ASN.V81138. [DOI] [PubMed] [Google Scholar]
- D'Souza M. P., Harden V. A. Chemokines and HIV-1 second receptors. Confluence of two fields generates optimism in AIDS research. Nat Med. 1996 Dec;2(12):1293–1300. doi: 10.1038/nm1296-1293. [DOI] [PubMed] [Google Scholar]
- Enari M., Hug H., Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature. 1995 May 4;375(6526):78–81. doi: 10.1038/375078a0. [DOI] [PubMed] [Google Scholar]
- Endres M. J., Clapham P. R., Marsh M., Ahuja M., Turner J. D., McKnight A., Thomas J. F., Stoebenau-Haggarty B., Choe S., Vance P. J. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell. 1996 Nov 15;87(4):745–756. doi: 10.1016/s0092-8674(00)81393-8. [DOI] [PubMed] [Google Scholar]
- Everall I. P., Luthert P. J., Lantos P. L. Neuronal loss in the frontal cortex in HIV infection. Lancet. 1991 May 11;337(8750):1119–1121. doi: 10.1016/0140-6736(91)92786-2. [DOI] [PubMed] [Google Scholar]
- Fauci A. S., Pantaleo G., Stanley S., Weissman D. Immunopathogenic mechanisms of HIV infection. Ann Intern Med. 1996 Apr 1;124(7):654–663. doi: 10.7326/0003-4819-124-7-199604010-00006. [DOI] [PubMed] [Google Scholar]
- Federsppiel B., Melhado I. G., Duncan A. M., Delaney A., Schappert K., Clark-Lewis I., Jirik F. R. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics. 1993 Jun;16(3):707–712. doi: 10.1006/geno.1993.1251. [DOI] [PubMed] [Google Scholar]
- Feng Y., Broder C. C., Kennedy P. E., Berger E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
- Finkel T. H., Tudor-Williams G., Banda N. K., Cotton M. F., Curiel T., Monks C., Baba T. W., Ruprecht R. M., Kupfer A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1995 Feb;1(2):129–134. doi: 10.1038/nm0295-129. [DOI] [PubMed] [Google Scholar]
- Gehri R., Hahn S., Rothen M., Steuerwald M., Nuesch R., Erb P. The Fas receptor in HIV infection: expression on peripheral blood lymphocytes and role in the depletion of T cells. AIDS. 1996 Jan;10(1):9–16. [PubMed] [Google Scholar]
- Green D. F., Resnick L., Bourgoignie J. J. HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int. 1992 Apr;41(4):956–960. doi: 10.1038/ki.1992.146. [DOI] [PubMed] [Google Scholar]
- He J., Chen Y., Farzan M., Choe H., Ohagen A., Gartner S., Busciglio J., Yang X., Hofmann W., Newman W. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature. 1997 Feb 13;385(6617):645–649. doi: 10.1038/385645a0. [DOI] [PubMed] [Google Scholar]
- Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science. 1991 Jul 5;253(5015):71–74. doi: 10.1126/science.1905842. [DOI] [PubMed] [Google Scholar]
- Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991 Jul 26;66(2):233–243. doi: 10.1016/0092-8674(91)90614-5. [DOI] [PubMed] [Google Scholar]
- Kaplan D., Sieg S. Role of the Fas/Fas ligand apoptotic pathway in human immunodeficiency virus type 1 disease. J Virol. 1998 Aug;72(8):6279–6282. doi: 10.1128/jvi.72.8.6279-6282.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katsikis P. D., Wunderlich E. S., Smith C. A., Herzenberg L. A., Herzenberg L. A. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med. 1995 Jun 1;181(6):2029–2036. doi: 10.1084/jem.181.6.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kayagaki N., Kawasaki A., Ebata T., Ohmoto H., Ikeda S., Inoue S., Yoshino K., Okumura K., Yagita H. Metalloproteinase-mediated release of human Fas ligand. J Exp Med. 1995 Dec 1;182(6):1777–1783. doi: 10.1084/jem.182.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kermer P., Klöcker N., Labes M., Bähr M. Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J Neurosci. 1998 Jun 15;18(12):4656–4662. doi: 10.1523/JNEUROSCI.18-12-04656.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimmel P. L., Ferreira-Centeno A., Farkas-Szallasi T., Abraham A. A., Garrett C. T. Viral DNA in microdissected renal biopsy tissue from HIV infected patients with nephrotic syndrome. Kidney Int. 1993 Jun;43(6):1347–1352. doi: 10.1038/ki.1993.189. [DOI] [PubMed] [Google Scholar]
- Laurence J., Mitra D., Steiner M., Staiano-Coico L., Jaffe E. Plasma from patients with idiopathic and human immunodeficiency virus-associated thrombotic thrombocytopenic purpura induces apoptosis in microvascular endothelial cells. Blood. 1996 Apr 15;87(8):3245–3254. [PubMed] [Google Scholar]
- Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C. J., Friedman D. J., Wang C., Metelev V., Pardee A. B. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science. 1995 Apr 21;268(5209):429–431. doi: 10.1126/science.7716549. [DOI] [PubMed] [Google Scholar]
- Lu W., Salerno-Goncalves R., Yuan J., Sylvie D., Han D. S., Andrieu J. M. Glucocorticoids rescue CD4+ T lymphocytes from activation-induced apoptosis triggered by HIV-1: implications for pathogenesis and therapy. AIDS. 1995 Jan;9(1):35–42. doi: 10.1097/00002030-199501000-00005. [DOI] [PubMed] [Google Scholar]
- McGahon A. J., Martin S. J., Bissonnette R. P., Mahboubi A., Shi Y., Mogil R. J., Nishioka W. K., Green D. R. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol. 1995;46:153–185. doi: 10.1016/s0091-679x(08)61929-9. [DOI] [PubMed] [Google Scholar]
- Nadasdy T., Hanson-Painton O., Davis L. D., Miller K. W., DeBault L. E., Burns D. K., Silva F. G. Conditions affecting the immunohistochemical detection of HIV in fixed and embedded renal and nonrenal tissues. Mod Pathol. 1992 May;5(3):283–291. [PubMed] [Google Scholar]
- Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. doi: 10.1016/s0092-8674(00)81874-7. [DOI] [PubMed] [Google Scholar]
- Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
- Nicholson D. W. ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat Biotechnol. 1996 Mar;14(3):297–301. doi: 10.1038/nbt0396-297. [DOI] [PubMed] [Google Scholar]
- Racusen L. C., Monteil C., Sgrignoli A., Lucskay M., Marouillat S., Rhim J. G., Morin J. P. Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med. 1997 Mar;129(3):318–329. doi: 10.1016/s0022-2143(97)90180-3. [DOI] [PubMed] [Google Scholar]
- Rao T. K. Human immunodeficiency virus (HIV) associated nephropathy. Annu Rev Med. 1991;42:391–401. doi: 10.1146/annurev.me.42.020191.002135. [DOI] [PubMed] [Google Scholar]
- Rappaport J., Kopp J. B., Klotman P. E. Host virus interactions and the molecular regulation of HIV-1: role in the pathogenesis of HIV-associated nephropathy. Kidney Int. 1994 Jul;46(1):16–27. doi: 10.1038/ki.1994.240. [DOI] [PubMed] [Google Scholar]
- Ray P. E., Liu X. H., Henry D., Dye L., 3rd, Xu L., Orenstein J. M., Schuztbank T. E. Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int. 1998 May;53(5):1217–1229. doi: 10.1046/j.1523-1755.1998.00900.x. [DOI] [PubMed] [Google Scholar]
- Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997 Nov 14;91(4):443–446. doi: 10.1016/s0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
- Savill J. Apoptosis and the kidney. J Am Soc Nephrol. 1994 Jul;5(1):12–21. doi: 10.1681/ASN.V5112. [DOI] [PubMed] [Google Scholar]
- Shi B., De Girolami U., He J., Wang S., Lorenzo A., Busciglio J., Gabuzda D. Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Invest. 1996 Nov 1;98(9):1979–1990. doi: 10.1172/JCI119002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiraki K., Tsuji N., Shioda T., Isselbacher K. J., Takahashi H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6420–6425. doi: 10.1073/pnas.94.12.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silvestris F., Nagata S., Cafforio P., Silvestris N., Dammacco F. Cross-linking of Fas by antibodies to a peculiar domain of gp120 V3 loop can enhance T cell apoptosis in HIV-1-infected patients. J Exp Med. 1996 Dec 1;184(6):2287–2300. doi: 10.1084/jem.184.6.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloand E. M., Maciejewski J. P., Sato T., Bruny J., Kumar P., Kim S., Weichold F. F., Young N. S. The role of interleukin-converting enzyme in Fas-mediated apoptosis in HIV-1 infection. J Clin Invest. 1998 Jan 1;101(1):195–201. doi: 10.1172/JCI530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. A., Farrah T., Goodwin R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994 Mar 25;76(6):959–962. doi: 10.1016/0092-8674(94)90372-7. [DOI] [PubMed] [Google Scholar]
- Stricker K., Knipping E., Böhler T., Benner A., Krammer P. H., Debatin K. M. Anti-CD95 (APO-1/Fas) autoantibodies and T cell depletion in human immunodeficiency virus type 1 (HIV-1)-infected children. Cell Death Differ. 1998 Mar;5(3):222–230. doi: 10.1038/sj.cdd.4400332. [DOI] [PubMed] [Google Scholar]
- Striker G. E., Striker L. J. Glomerular cell culture. Lab Invest. 1985 Aug;53(2):122–131. [PubMed] [Google Scholar]
- Tepper C. G., Jayadev S., Liu B., Bielawska A., Wolff R., Yonehara S., Hannun Y. A., Seldin M. F. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8443–8447. doi: 10.1073/pnas.92.18.8443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
- Toniolo A., Serra C., Conaldi P. G., Basolo F., Falcone V., Dolei A. Productive HIV-1 infection of normal human mammary epithelial cells. AIDS. 1995 Aug;9(8):859–866. doi: 10.1097/00002030-199508000-00005. [DOI] [PubMed] [Google Scholar]
- Westendorp M. O., Frank R., Ochsenbauer C., Stricker K., Dhein J., Walczak H., Debatin K. M., Krammer P. H. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature. 1995 Jun 8;375(6531):497–500. doi: 10.1038/375497a0. [DOI] [PubMed] [Google Scholar]
- Winston J. A., Klotman P. E. Are we missing an epidemic of HIV-associated nephropathy? J Am Soc Nephrol. 1996 Jan;7(1):1–7. doi: 10.1681/ASN.V711. [DOI] [PubMed] [Google Scholar]
- Yahi N., Baghdiguian S., Moreau H., Fantini J. Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J Virol. 1992 Aug;66(8):4848–4854. doi: 10.1128/jvi.66.8.4848-4854.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura S., Banno Y., Nakashima S., Takenaka K., Sakai H., Nishimura Y., Sakai N., Shimizu S., Eguchi Y., Tsujimoto Y. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J Biol Chem. 1998 Mar 20;273(12):6921–6927. doi: 10.1074/jbc.273.12.6921. [DOI] [PubMed] [Google Scholar]