Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 15;102(12):2061–2071. doi: 10.1172/JCI4394

Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase.

Y Ohashi 1, S Kawashima 1, K i Hirata 1, T Yamashita 1, T Ishida 1, N Inoue 1, T Sakoda 1, H Kurihara 1, Y Yazaki 1, M Yokoyama 1
PMCID: PMC509160  PMID: 9854041

Abstract

Nitric oxide (NO), constitutively produced by endothelial nitric oxide synthase (eNOS), plays a major role in the regulation of blood pressure and vascular tone. We generated transgenic mice overexpressing bovine eNOS in the vascular wall using murine preproendothelin-1 promoter. In transgenic lineages with three to eight transgene copies, bovine eNOS-specific mRNA, protein expression in the particulate fractions, and calcium-dependent NOS activity were confirmed by RNase protection assay, immunoblotting, and L-arginine/citrulline conversion. Immunohistochemical studies revealed that eNOS protein was predominantly localized in the endothelial cells of aorta, heart, and lung. Blood pressure was significantly lower in eNOS-overexpressing mice than in control littermates. In the transgenic aorta, basal NO release (estimated by Nomega-nitro-L-arginine-induced facilitation of the contraction by prostaglandin F2alpha) and basal cGMP levels (measured by enzyme immunoassay) were significantly increased. In contrast, relaxations of transgenic aorta in response to acetylcholine and sodium nitroprusside were significantly attenuated, and the reduced vascular reactivity was associated with reduced response of cGMP elevation to these agents as compared with control aortas. Thus, our novel mouse model of chronic eNOS overexpression demonstrates that, in addition to the essential role of eNOS in blood pressure regulation, tonic NO release by eNOS in the endothelium induces the reduced vascular reactivity to NO-mediated vasodilators, providing several insights into the pathogenesis of nitrate tolerance.

Full Text

The Full Text of this article is available as a PDF (567.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aird W. C., Jahroudi N., Weiler-Guettler H., Rayburn H. B., Rosenberg R. D. Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4567–4571. doi: 10.1073/pnas.92.10.4567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Cowan P. J., Shinkel T. A., Witort E. J., Barlow H., Pearse M. J., d'Apice A. J. Targeting gene expression to endothelial cells in transgenic mice using the human intercellular adhesion molecule 2 promoter. Transplantation. 1996 Jul 27;62(2):155–160. doi: 10.1097/00007890-199607270-00002. [DOI] [PubMed] [Google Scholar]
  5. Dinerman J. L., Lowenstein C. J., Snyder S. H. Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res. 1993 Aug;73(2):217–222. doi: 10.1161/01.res.73.2.217. [DOI] [PubMed] [Google Scholar]
  6. Dzau V. J., Gibbons G. H. Endothelium and growth factors in vascular remodeling of hypertension. Hypertension. 1991 Nov;18(5 Suppl):III115–III121. doi: 10.1161/01.hyp.18.5_suppl.iii115. [DOI] [PubMed] [Google Scholar]
  7. Faraci F. M., Sigmund C. D., Shesely E. G., Maeda N., Heistad D. D. Responses of carotid artery in mice deficient in expression of the gene for endothelial NO synthase. Am J Physiol. 1998 Feb;274(2 Pt 2):H564–H570. doi: 10.1152/ajpheart.1998.274.2.H564. [DOI] [PubMed] [Google Scholar]
  8. Ferguson J. J. American College of Cardiology 45th Annual Scientific Session, Orlando, Florida, March 24 to 27, 1996. Circulation. 1996 Jul 1;94(1):1–5. doi: 10.1161/01.cir.94.1.1. [DOI] [PubMed] [Google Scholar]
  9. Filippov G., Bloch D. B., Bloch K. D. Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells. J Clin Invest. 1997 Aug 15;100(4):942–948. doi: 10.1172/JCI119610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harats D., Kurihara H., Belloni P., Oakley H., Ziober A., Ackley D., Cain G., Kurihara Y., Lawn R., Sigal E. Targeting gene expression to the vascular wall in transgenic mice using the murine preproendothelin-1 promoter. J Clin Invest. 1995 Mar;95(3):1335–1344. doi: 10.1172/JCI117784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayashi T., Fukuto J. M., Ignarro L. J., Chaudhuri G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: implications for atherosclerosis. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11259–11263. doi: 10.1073/pnas.89.23.11259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirata K., Miki N., Kuroda Y., Sakoda T., Kawashima S., Yokoyama M. Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circ Res. 1995 Jun;76(6):958–962. doi: 10.1161/01.res.76.6.958. [DOI] [PubMed] [Google Scholar]
  13. Huang P. L., Huang Z., Mashimo H., Bloch K. D., Moskowitz M. A., Bevan J. A., Fishman M. C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995 Sep 21;377(6546):239–242. doi: 10.1038/377239a0. [DOI] [PubMed] [Google Scholar]
  14. Janssens S. P., Bloch K. D., Nong Z., Gerard R. D., Zoldhelyi P., Collen D. Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest. 1996 Jul 15;98(2):317–324. doi: 10.1172/JCI118795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kamata K., Sugiura M., Kojima S., Kasuya Y. Preservation of endothelium-dependent relaxation in cholesterol-fed and streptozotocin-induced diabetic mice by the chronic administration of cholestyramine. Br J Pharmacol. 1996 May;118(2):385–391. doi: 10.1111/j.1476-5381.1996.tb15414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kanazawa K., Kawashima S., Mikami S., Miwa Y., Hirata K., Suematsu M., Hayashi Y., Itoh H., Yokoyama M. Endothelial constitutive nitric oxide synthase protein and mRNA increased in rabbit atherosclerotic aorta despite impaired endothelium-dependent vascular relaxation. Am J Pathol. 1996 Jun;148(6):1949–1956. [PMC free article] [PubMed] [Google Scholar]
  17. Kullo I. J., Mozes G., Schwartz R. S., Gloviczki P., Crotty T. B., Barber D. A., Katusic Z. S., O'Brien T. Adventitial gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries alters vascular reactivity. Circulation. 1997 Oct 7;96(7):2254–2261. doi: 10.1161/01.cir.96.7.2254. [DOI] [PubMed] [Google Scholar]
  18. Kullo I. J., Mozes G., Schwartz R. S., Gloviczki P., Tsutsui M., Katusic Z. S., O'Brien T. Enhanced endothelium-dependent relaxations after gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries. Hypertension. 1997 Sep;30(3 Pt 1):314–320. doi: 10.1161/01.hyp.30.3.314. [DOI] [PubMed] [Google Scholar]
  19. Lin K. F., Chao L., Chao J. Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery. Hypertension. 1997 Sep;30(3 Pt 1):307–313. doi: 10.1161/01.hyp.30.3.307. [DOI] [PubMed] [Google Scholar]
  20. Molina C. R., Andresen J. W., Rapoport R. M., Waldman S., Murad F. Effect of in vivo nitroglycerin therapy on endothelium-dependent and independent vascular relaxation and cyclic GMP accumulation in rat aorta. J Cardiovasc Pharmacol. 1987 Oct;10(4):371–378. doi: 10.1097/00005344-198710000-00001. [DOI] [PubMed] [Google Scholar]
  21. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  22. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  23. Moncada S., Rees D. D., Schulz R., Palmer R. M. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2166–2170. doi: 10.1073/pnas.88.6.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moshage H., Kok B., Huizenga J. R., Jansen P. L. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem. 1995 Jun;41(6 Pt 1):892–896. [PubMed] [Google Scholar]
  25. Münzel T., Sayegh H., Freeman B. A., Tarpey M. M., Harrison D. G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest. 1995 Jan;95(1):187–194. doi: 10.1172/JCI117637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  27. Nishida K., Harrison D. G., Navas J. P., Fisher A. A., Dockery S. P., Uematsu M., Nerem R. M., Alexander R. W., Murphy T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992 Nov;90(5):2092–2096. doi: 10.1172/JCI116092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ogawa Y., Itoh H., Tamura N., Suga S., Yoshimasa T., Uehira M., Matsuda S., Shiono S., Nishimoto H., Nakao K. Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest. 1994 May;93(5):1911–1921. doi: 10.1172/JCI117182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohashi Y., Katayama M., Hirata K., Suematsu M., Kawashima S., Yokoyama M. Activation of nitric oxide synthase from cultured aortic endothelial cells by phospholipids. Biochem Biophys Res Commun. 1993 Sep 30;195(3):1314–1320. doi: 10.1006/bbrc.1993.2187. [DOI] [PubMed] [Google Scholar]
  30. Ooboshi H., Chu Y., Rios C. D., Faraci F. M., Davidson B. L., Heistad D. D. Altered vascular function after adenovirus-mediated overexpression of endothelial nitric oxide synthase. Am J Physiol. 1997 Jul;273(1 Pt 2):H265–H270. doi: 10.1152/ajpheart.1997.273.1.H265. [DOI] [PubMed] [Google Scholar]
  31. Papapetropoulos A., Go C. Y., Murad F., Catravas J. D. Mechanisms of tolerance to sodium nitroprusside in rat cultured aortic smooth muscle cells. Br J Pharmacol. 1996 Jan;117(1):147–155. doi: 10.1111/j.1476-5381.1996.tb15167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pollock J. S., Nakane M., Buttery L. D., Martinez A., Springall D., Polak J. M., Förstermann U., Murad F. Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol. 1993 Nov;265(5 Pt 1):C1379–C1387. doi: 10.1152/ajpcell.1993.265.5.C1379. [DOI] [PubMed] [Google Scholar]
  33. Rubanyi G. M., Freay A. D., Kauser K., Sukovich D., Burton G., Lubahn D. B., Couse J. F., Curtis S. W., Korach K. S. Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effect of estrogen receptor gene disruption. J Clin Invest. 1997 May 15;99(10):2429–2437. doi: 10.1172/JCI119426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schlaeger T. M., Qin Y., Fujiwara Y., Magram J., Sato T. N. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development. 1995 Apr;121(4):1089–1098. doi: 10.1242/dev.121.4.1089. [DOI] [PubMed] [Google Scholar]
  35. Shesely E. G., Maeda N., Kim H. S., Desai K. M., Krege J. H., Laubach V. E., Sherman P. A., Sessa W. C., Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13176–13181. doi: 10.1073/pnas.93.23.13176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinhelper M. E., Cochrane K. L., Field L. J. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990 Sep;16(3):301–307. doi: 10.1161/01.hyp.16.3.301. [DOI] [PubMed] [Google Scholar]
  37. Waldman S. A., Rapoport R. M., Ginsburg R., Murad F. Desensitization to nitroglycerin in vascular smooth muscle from rat and human. Biochem Pharmacol. 1986 Oct 15;35(20):3525–3531. doi: 10.1016/0006-2952(86)90622-2. [DOI] [PubMed] [Google Scholar]
  38. Wang D. Z., Chao L., Chao J. Hypotension in transgenic mice overexpressing human bradykinin B2 receptor. Hypertension. 1997 Jan;29(1 Pt 2):488–493. doi: 10.1161/01.hyp.29.1.488. [DOI] [PubMed] [Google Scholar]
  39. Wang J., Xiong W., Yang Z., Davis T., Dewey M. J., Chao J., Chao L. Human tissue kallikrein induces hypotension in transgenic mice. Hypertension. 1994 Feb;23(2):236–243. doi: 10.1161/01.hyp.23.2.236. [DOI] [PubMed] [Google Scholar]
  40. von der Leyen H. E., Gibbons G. H., Morishita R., Lewis N. P., Zhang L., Nakajima M., Kaneda Y., Cooke J. P., Dzau V. J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1137–1141. doi: 10.1073/pnas.92.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES