Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Dec 15;102(12):2173–2179. doi: 10.1172/JCI4836

Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A.

V S Tanphaichitr 1, A Sumboonnanonda 1, H Ideguchi 1, C Shayakul 1, C Brugnara 1, M Takao 1, G Veerakul 1, S L Alper 1
PMCID: PMC509172  PMID: 9854053

Abstract

The AE1 gene encodes band 3 Cl-/HCO3- exchangers that are expressed both in the erythrocyte and in the acid-secreting, type A intercalated cells of the kidney. Kidney AE1 contributes to urinary acidification by providing the major exit route for HCO3- across the basolateral membrane. Several AE1 mutations cosegregate with dominantly transmitted nonsyndromic renal tubular acidosis (dRTA). However, the modest degree of in vitro hypofunction exhibited by these dRTA-associated mutations fails to explain the disease phenotype in light of the normal urinary acidification associated with the complete loss-of-function exhibited by AE1 mutations linked to dominant spherocytosis. We report here novel AE1 mutations linked to a recessive syndrome of dRTA and hemolytic anemia in which red cell anion transport is normal. Both affected individuals were triply homozygous for two benign mutations M31T and K56E and for the loss-of-function mutation, G701D. AE1 G701D loss-of-function was accompanied by impaired trafficking to the Xenopus oocyte surface. Coexpression with AE1 G701D of the erythroid AE1 chaperonin, glycophorin A, rescued both AE1-mediated Cl- transport and AE1 surface expression in oocytes. The genetic and functional data both suggest that the homozygous AE1 G701D mutation causes recessively transmitted dRTA in this kindred with apparently normal erythroid anion transport.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alper S. L., Stuart-Tilley A. K., Biemesderfer D., Shmukler B. E., Brown D. Immunolocalization of AE2 anion exchanger in rat kidney. Am J Physiol. 1997 Oct;273(4 Pt 2):F601–F614. doi: 10.1152/ajprenal.1997.273.4.F601. [DOI] [PubMed] [Google Scholar]
  3. Brosius F. C., 3rd, Alper S. L., Garcia A. M., Lodish H. F. The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem. 1989 May 15;264(14):7784–7787. [PubMed] [Google Scholar]
  4. Bruce L. J., Cope D. L., Jones G. K., Schofield A. E., Burley M., Povey S., Unwin R. J., Wrong O., Tanner M. J. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997 Oct 1;100(7):1693–1707. doi: 10.1172/JCI119694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruce L. J., Groves J. D., Okubo Y., Thilaganathan B., Tanner M. J. Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) red blood cells. Blood. 1994 Aug 1;84(3):916–922. [PubMed] [Google Scholar]
  6. Chernova M. N., Jarolim P., Palek J., Alper S. L. Overexpression of AE1 Prague, but not of AE1 SAO, inhibits wild-type AE1 trafficking in Xenopus oocytes. J Membr Biol. 1995 Nov;148(2):203–210. doi: 10.1007/BF00207276. [DOI] [PubMed] [Google Scholar]
  7. Groves J. D., Tanner M. J. Glycophorin A facilitates the expression of human band 3-mediated anion transport in Xenopus oocytes. J Biol Chem. 1992 Nov 5;267(31):22163–22170. [PubMed] [Google Scholar]
  8. Ideguchi H., Okubo K., Ishikawa A., Futata Y., Hamasaki N. Band 3-Memphis is associated with a lower transport rate of phosphoenolpyruvate. Br J Haematol. 1992 Sep;82(1):122–125. doi: 10.1111/j.1365-2141.1992.tb04603.x. [DOI] [PubMed] [Google Scholar]
  9. Inaba M., Yawata A., Koshino I., Sato K., Takeuchi M., Takakuwa Y., Manno S., Yawata Y., Kanzaki A., Sakai J. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest. 1996 Apr 15;97(8):1804–1817. doi: 10.1172/JCI118610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarolim P., Murray J. L., Rubin H. L., Taylor W. M., Prchal J. T., Ballas S. K., Snyder L. M., Chrobak L., Melrose W. D., Brabec V. Characterization of 13 novel band 3 gene defects in hereditary spherocytosis with band 3 deficiency. Blood. 1996 Dec 1;88(11):4366–4374. [PubMed] [Google Scholar]
  11. Jarolim P., Palek J., Amato D., Hassan K., Sapak P., Nurse G. T., Rubin H. L., Zhai S., Sahr K. E., Liu S. C. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11022–11026. doi: 10.1073/pnas.88.24.11022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jarolim P., Rubin H. L., Liu S. C., Cho M. R., Brabec V., Derick L. H., Yi S. J., Saad S. T., Alper S., Brugnara C. Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest. 1994 Jan;93(1):121–130. doi: 10.1172/JCI116935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jarolim P., Rubin H. L., Zhai S., Sahr K. E., Liu S. C., Mueller T. J., Palek J. Band 3 Memphis: a widespread polymorphism with abnormal electrophoretic mobility of erythrocyte band 3 protein caused by substitution AAG----GAG (Lys----Glu) in codon 56. Blood. 1992 Sep 15;80(6):1592–1598. [PubMed] [Google Scholar]
  14. Jarolim P., Shayakul C., Prabakaran D., Jiang L., Stuart-Tilley A., Rubin H. L., Simova S., Zavadil J., Herrin J. T., Brouillette J. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger. J Biol Chem. 1998 Mar 13;273(11):6380–6388. doi: 10.1074/jbc.273.11.6380. [DOI] [PubMed] [Google Scholar]
  15. Karet F. E., Gainza F. J., Györy A. Z., Unwin R. J., Wrong O., Tanner M. J., Nayir A., Alpay H., Santos F., Hulton S. A. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6337–6342. doi: 10.1073/pnas.95.11.6337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kollert-Jöns A., Wagner S., Hübner S., Appelhans H., Drenckhahn D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol. 1993 Dec;265(6 Pt 2):F813–F821. doi: 10.1152/ajprenal.1993.265.6.F813. [DOI] [PubMed] [Google Scholar]
  17. Korsgren C., Lawler J., Lambert S., Speicher D., Cohen C. M. Complete amino acid sequence and homologies of human erythrocyte membrane protein band 4.2. Proc Natl Acad Sci U S A. 1990 Jan;87(2):613–617. doi: 10.1073/pnas.87.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miraglia del Giudice E., Vallier A., Maillet P., Perrotta S., Cutillo S., Iolascon A., Tanner M. J., Delaunay J., Alloisio N. Novel band 3 variants (bands 3 Foggia, Napoli I and Napoli II) associated with hereditary spherocytosis and band 3 deficiency: status of the D38A polymorphism within the EPB3 locus. Br J Haematol. 1997 Jan;96(1):70–76. doi: 10.1046/j.1365-2141.1997.8732504.x. [DOI] [PubMed] [Google Scholar]
  19. Nilwarangkur S., Nimmannit S., Chaovakul V., Susaengrat W., Ong-aj-Yooth S., Vasuvattakul S., Pidetcha P., Malasit P. Endemic primary distal renal tubular acidosis in Thailand. Q J Med. 1990 Mar;74(275):289–301. [PubMed] [Google Scholar]
  20. Nimmannit S., Malasit P., Susaengrat W., Ong-Aj-Yooth S., Vasuvattakul S., Pidetcha P., Shayakul C., Nilwarangkur S. Prevalence of endemic distal renal tubular acidosis and renal stone in the northeast of Thailand. Nephron. 1996;72(4):604–610. doi: 10.1159/000188947. [DOI] [PubMed] [Google Scholar]
  21. Oto M., Miyake S., Yuasa Y. Optimization of nonradioisotopic single strand conformation polymorphism analysis with a conventional minislab gel electrophoresis apparatus. Anal Biochem. 1993 Aug 15;213(1):19–22. doi: 10.1006/abio.1993.1379. [DOI] [PubMed] [Google Scholar]
  22. Peters L. L., Shivdasani R. A., Liu S. C., Hanspal M., John K. M., Gonzalez J. M., Brugnara C., Gwynn B., Mohandas N., Alper S. L. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell. 1996 Sep 20;86(6):917–927. doi: 10.1016/s0092-8674(00)80167-1. [DOI] [PubMed] [Google Scholar]
  23. Remaley A. T., Ugorski M., Wu N., Litzky L., Burger S. R., Moore J. S., Fukuda M., Spitalnik S. L. Expression of human glycophorin A in wild type and glycosylation-deficient Chinese hamster ovary cells. Role of N- and O-linked glycosylation in cell surface expression. J Biol Chem. 1991 Dec 15;266(35):24176–24183. [PubMed] [Google Scholar]
  24. Schofield A. E., Reardon D. M., Tanner M. J. Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature. 1992 Feb 27;355(6363):836–838. doi: 10.1038/355836a0. [DOI] [PubMed] [Google Scholar]
  25. Yannoukakos D., Vasseur C., Driancourt C., Blouquit Y., Delaunay J., Wajcman H., Bursaux E. Human erythrocyte band 3 polymorphism (band 3 Memphis): characterization of the structural modification (Lys 56----Glu) by protein chemistry methods. Blood. 1991 Aug 15;78(4):1117–1120. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES