Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Feb 1;88(3):882–886. doi: 10.1073/pnas.88.3.882

Heme-protein fission under nondenaturing conditions.

M L Smith 1, J Paul 1, P I Ohlsson 1, K Hjortsberg 1, K G Paul 1
PMCID: PMC50918  PMID: 1846966

Abstract

Slow heme transfer from horseradish peroxidases C2 and A2, cytochrome c peroxidase, chloroperoxidase, and leghemoglobins to a heme acceptor protein, apomyoglobin, has been studied under mild conditions. The reaction is best described as heme release into water followed by quick engulfment by apomyoglobin. The energetics of the activated process are large and interpreted as connected to both polypeptide motions during release and the ordering of water around the heme during solvation. The free energy required to break the iron(III)-ligand 5 (L5) bond is a minor but crucial portion of the activation free energy. Donor-acceptor protein interactions are not involved in the transfer. Fast heme release from inactive protein has also been observed. Apoprotein recombination with porphyrins and hemes suggest that this lack of activity is a result of Fe-L5 bond breaking.

Full text

PDF
882

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANERJEE R. [Thermodynamic study of the heme-globin association. I. Dissociation equilibrium of metmyoglobin: thermodynamic data]. Biochim Biophys Acta. 1962 Oct 22;64:368–384. doi: 10.1016/0006-3002(62)90746-1. [DOI] [PubMed] [Google Scholar]
  2. Bunn H. F., Jandl J. H. Exchange of heme among hemoglobins and between hemoglobin and albumin. J Biol Chem. 1968 Feb 10;243(3):465–475. [PubMed] [Google Scholar]
  3. Doster W., Bowne S. F., Frauenfelder H., Reinisch L., Shyamsunder E. Recombination of carbon monoxide to ferrous horseradish peroxidase types A and C. J Mol Biol. 1987 Mar 20;194(2):299–312. doi: 10.1016/0022-2836(87)90377-9. [DOI] [PubMed] [Google Scholar]
  4. Ellfolk N., Pertilä U., Sievers G. Crystalline leghemoglobin. XIV. Transfer of hematin from Lba and Lbc to horse-radish peroxidase apoprotein. Acta Chem Scand. 1973;27(9):3601–3602. doi: 10.3891/acta.chem.scand.27-3601. [DOI] [PubMed] [Google Scholar]
  5. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  6. Fita I., Rossmann M. G. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1604–1608. doi: 10.1073/pnas.82.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frauenfelder H., Wolynes P. G. Rate theories and puzzles of hemeprotein kinetics. Science. 1985 Jul 26;229(4711):337–345. doi: 10.1126/science.4012322. [DOI] [PubMed] [Google Scholar]
  8. Karplus M., McCammon J. A. The internal dynamics of globular proteins. CRC Crit Rev Biochem. 1981;9(4):293–349. doi: 10.3109/10409238109105437. [DOI] [PubMed] [Google Scholar]
  9. La Mar G. N., Kong S. B., Smith K. M., Langry K. C. Comparison of the heme electronic and molecular structure of soybean leghemoglobin and sperm whale myoglobin by proton NMR. Biochem Biophys Res Commun. 1981 Sep 16;102(1):142–148. doi: 10.1016/0006-291x(81)91500-x. [DOI] [PubMed] [Google Scholar]
  10. MASSEY V. Studies on fumarase. II. The effects of inorganic anions on fumarase activity. Biochem J. 1953 Jan;53(1):67–71. doi: 10.1042/bj0530067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morpeth F. F., Massey V. Steady-state kinetic studies on D-lactate dehydrogenase from Megasphera elsdenii. Biochemistry. 1982 Mar 16;21(6):1307–1312. doi: 10.1021/bi00535a031. [DOI] [PubMed] [Google Scholar]
  12. Pasternack R. F., Gibbs E. J., Mauk A. G., Reid L. S., Wong N. M., Kurokawa K., Hashim M., Muller-Eberhard U. Kinetics of hemoprotein reduction and interprotein heme transfer. Biochemistry. 1985 Sep 24;24(20):5443–5448. doi: 10.1021/bi00341a024. [DOI] [PubMed] [Google Scholar]
  13. Paul J., Smith M. L., Paul K. G. The vibrational bands of carbon monoxide bound to hemes or metal surfaces. Biochim Biophys Acta. 1985 Dec 20;832(3):257–264. doi: 10.1016/0167-4838(85)90258-4. [DOI] [PubMed] [Google Scholar]
  14. Sievers G., Gadsby P. M., Peterson J., Thomson A. J. Assignment of the axial ligands of the haem in milk lactoperoxidase using magnetic circular dichroism spectroscopy. Biochim Biophys Acta. 1983 Feb 15;742(3):659–668. doi: 10.1016/0167-4838(83)90285-6. [DOI] [PubMed] [Google Scholar]
  15. Smith M. L., Hjortsberg K., Ohlsson P. I., Paul K. G. The mechanism of spontaneous heme release from horseradish peroxidase isoenzyme A2. Biomed Biochim Acta. 1983;42(7-8):805–811. [PubMed] [Google Scholar]
  16. Smith M. L., Hjortsberg K., Romeo P. H., Rosa J., Paul K. G. Mutant hemoglobin stability depends upon location and nature of single point mutation. FEBS Lett. 1984 Apr 24;169(2):147–150. doi: 10.1016/0014-5793(84)80307-5. [DOI] [PubMed] [Google Scholar]
  17. Stellwagen E. Haem exposure as the determinate of oxidation-reduction potential of haem proteins. Nature. 1978 Sep 7;275(5675):73–74. doi: 10.1038/275073a0. [DOI] [PubMed] [Google Scholar]
  18. Strottmann J. M., Stellwagen A., Bryant C., Stellwagen E. Spectral studies of horse heart porphyrin cytochrome c. J Biol Chem. 1984 Jun 10;259(11):6931–6936. [PubMed] [Google Scholar]
  19. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
  20. Tamura M., Asakura T., Yonetani T. Heme-modification studies on horseradish peroxidase. Biochim Biophys Acta. 1972 May 12;268(2):292–304. doi: 10.1016/0005-2744(72)90324-5. [DOI] [PubMed] [Google Scholar]
  21. Tamura Y., Morita Y. Thermal denaturation and regeneration of japanese-radish peroxidase. J Biochem. 1975 Sep;78(3):561–571. doi: 10.1093/oxfordjournals.jbchem.a130941. [DOI] [PubMed] [Google Scholar]
  22. Yamada H., Makino R., Yamazaki I. Effects of 2,4-substituents of deuteropheme upon redox potentials of horseradish peroxidases. Arch Biochem Biophys. 1975 Jul;169(1):344–353. doi: 10.1016/0003-9861(75)90350-1. [DOI] [PubMed] [Google Scholar]
  23. Yamamoto Y., La Mar G. N. 1H NMR study of dynamics and thermodynamics of heme rotational disorder in native and reconstituted hemoglobin A. Biochemistry. 1986 Sep 9;25(18):5288–5297. doi: 10.1021/bi00366a045. [DOI] [PubMed] [Google Scholar]
  24. Yonetani T., Anni H. Yeast cytochrome c peroxidase. Coordination and spin states of heme prosthetic group. J Biol Chem. 1987 Jul 15;262(20):9547–9554. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES