Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Feb 1;88(3):906–910. doi: 10.1073/pnas.88.3.906

Cyclic AMP mediates the direct antiproliferative action of mismatched double-stranded RNA.

H R Hubbell 1, J E Boyer 1, P Roane 1, R M Burch 1
PMCID: PMC50923  PMID: 1846967

Abstract

Previous experiments have demonstrated that double-stranded RNAs (dsRNAs) can exert an antiproliferative effect on human tumor cells, independent of interferon (IFN) induction. However, the mechanism by which dsRNAs inhibit tumor growth has not been elucidated. As a first step in determining the molecular events responsible for growth arrest, we have explored the role of signal transduction through the cAMP system in the antiproliferative effect of the mismatched dsRNA, r(I)n.r(C12,U)n (Ampligen). These studies utilized the human glioma cell line A1235, which does not produce detectable levels of IFN-alpha, -beta, or -gamma in response to mismatched dsRNA treatment. Treatment of A1235 cells with mismatched dsRNA in combination with either 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), which inhibits cAMP-dependent protein kinase and protein kinase C, or N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), which preferentially inhibits the cAMP-dependent protein kinase, yielded an antagonism of the mismatched dsRNA-induced antiproliferative effect. Measurement of adenylate cyclase activation showed a dose-dependent increase in activity at antiproliferative mismatched dsRNA concentrations, but not at lower, nonantiproliferative doses. This increase in activity was rapid, seen as early as 30 sec after initiation of treatment, and it was sustained at peak levels for 1-2 hr. Analysis of the intracellular cAMP concentration gave similar kinetics of induction. Exposure of cells to the stable cAMP analogue dibutyryl cAMP yielded dose-dependent inhibition of cell growth. The cAMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also inhibited proliferation. In contrast, neither H-7 nor HA1004 had an effect on growth inhibition induced by human natural IFN-alpha treatment. In addition, antiproliferative doses of IFN-alpha did not increase cAMP concentrations. These results indicate that the cAMP system is utilized by mismatched dsRNA as an early signal transduction mechanism for growth control. Furthermore, the antiproliferative effects induced by mismatched dsRNA and IFN can occur by different mechanisms of action.

Full text

PDF
906

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen B., Milsted A., Kennedy G., Nilson J. H. Cyclic AMP and phorbol esters interact synergistically to regulate expression of the chorionic gonadotropin genes. J Biol Chem. 1988 Oct 25;263(30):15578–15583. [PubMed] [Google Scholar]
  2. Anderson P., Yip Y. K., Vilcek J. Human interferon-gamma is internalized and degraded by cultured fibroblasts. J Biol Chem. 1983 May 25;258(10):6497–6502. [PubMed] [Google Scholar]
  3. Banerjee D. K., Baksi K., Gottesman M. M. Genetic evidence that action of cAMP-dependent protein kinase is not an obligatory step for antiviral and antiproliferative effects of human interferon in Chinese hamster ovary cells. Virology. 1983 Aug;129(1):230–238. doi: 10.1016/0042-6822(83)90411-7. [DOI] [PubMed] [Google Scholar]
  4. Beavo J. A., Rogers N. L., Crofford O. B., Hardman J. G., Sutherland E. W., Newman E. V. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol Pharmacol. 1970 Nov;6(6):597–603. [PubMed] [Google Scholar]
  5. Biddle W., Leong S. S., Horoszewicz J., Ambrus J. L. Potentiation of the cell growth inhibitory effect of beta interferon by mopidamole. Proc Soc Exp Biol Med. 1984 Dec;177(3):487–490. doi: 10.3181/00379727-177-3-rc1. [DOI] [PubMed] [Google Scholar]
  6. Branca A. A., Faltynek C. R., D'Alessandro S. B., Baglioni C. Interaction of interferon with cellular receptors. Internalization and degradation of cell-bound interferon. J Biol Chem. 1982 Nov 25;257(22):13291–13296. [PubMed] [Google Scholar]
  7. Burch R. M., White M. F., Connor J. R. Interleukin 1 stimulates prostaglandin synthesis and cyclic AMP accumulation in Swiss 3T3 fibroblasts: interactions between two second messenger systems. J Cell Physiol. 1989 Apr;139(1):29–33. doi: 10.1002/jcp.1041390106. [DOI] [PubMed] [Google Scholar]
  8. Chapekar M. S., Knode M. C., Glazer R. I. The epidermal growth factor- and interferon-independent effects of double-stranded RNA in A431 cells. Mol Pharmacol. 1988 Oct;34(4):461–466. [PubMed] [Google Scholar]
  9. Comb M., Birnberg N. C., Seasholtz A., Herbert E., Goodman H. M. A cyclic AMP- and phorbol ester-inducible DNA element. 1986 Sep 25-Oct 1Nature. 323(6086):353–356. doi: 10.1038/323353a0. [DOI] [PubMed] [Google Scholar]
  10. Diamantstein T., Bittstein-Willinger E. Specific binding of poly(I)-poly(C) to the membrane of murine B lymphocyte subsets. Eur J Immunol. 1978 Dec;8(12):896–899. doi: 10.1002/eji.1830081213. [DOI] [PubMed] [Google Scholar]
  11. Dick R. S., Hubbell H. R. Sensitivities of human glioma cell lines to interferons and double-stranded RNAs individually and in synergistic combinations. J Neurooncol. 1987;5(4):331–338. doi: 10.1007/BF00148390. [DOI] [PubMed] [Google Scholar]
  12. Ebsworth N. M., Taylor-Papadimitriou J., Rozengurt E. Cyclic AMP does not mediate inhibition of DNA synthesis by interferon in mouse Swiss 3T3 cells. J Cell Physiol. 1984 Aug;120(2):146–150. doi: 10.1002/jcp.1041200206. [DOI] [PubMed] [Google Scholar]
  13. Fukumoto Y., Kawahara Y., Kariya K., Araki S., Fukuzaki H., Takai Y. Independent inhibition of DNA synthesis by protein kinase C, cyclic AMP and interferon alpha/beta in rabbit aortic smooth muscle cells. Biochem Biophys Res Commun. 1988 Nov 30;157(1):337–345. doi: 10.1016/s0006-291x(88)80052-4. [DOI] [PubMed] [Google Scholar]
  14. Fuse A., Kuwata T. Inhibition of DNA synthesis and alteration of cyclic adenosine 3',5'-monophosphate levels in RSa cells by human leukocyte interferon. J Natl Cancer Inst. 1978 Jun;60(6):1227–1232. doi: 10.1093/jnci/60.6.1227. [DOI] [PubMed] [Google Scholar]
  15. Gresser I., Tovey M. G. Antitumor effects of interferon. Biochim Biophys Acta. 1978 Oct 27;516(2):231–247. doi: 10.1016/0304-419x(78)90009-4. [DOI] [PubMed] [Google Scholar]
  16. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  17. Hubbell H. R., Liu R. S., Maxwell B. L. Independent sensitivity of human tumor cell lines to interferon and double-stranded RNA. Cancer Res. 1984 Aug;44(8):3252–3257. [PubMed] [Google Scholar]
  18. Hubbell H. R. Synergistic antiproliferative effect of human interferons in combination with mismatched double-stranded RNA on human tumor cells. Int J Cancer. 1986 Mar 15;37(3):359–365. doi: 10.1002/ijc.2910370306. [DOI] [PubMed] [Google Scholar]
  19. Itkes A. V., Turpaev K. T., Kartasheva O. N., Kafiani C. A., Severin E. S. Cyclic AMP-dependent regulation of activities of synthetase and phosphodiesterase of 2',5'-oligoadenylate in NIH 3T3 cells. Mol Cell Biochem. 1984;58(1-2):165–171. doi: 10.1007/BF00240616. [DOI] [PubMed] [Google Scholar]
  20. Jacobsen H., Krause D., Friedman R. M., Silverman R. H. Induction of ppp(A2'p)nA-dependent RNase in murine JLS-V9R cells during growth inhibition. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4954–4958. doi: 10.1073/pnas.80.16.4954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jungmann R. A., Kelley D. C., Miles M. F., Milkowski D. M. Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6,O2-dibutyryl cyclic amp increase the rate of transcription and change the stability of lactate dehydrogenase a subunit messenger RNA in rat C6 glioma cells. J Biol Chem. 1983 Apr 25;258(8):5312–5318. [PubMed] [Google Scholar]
  22. Kapitulnik J., Levin W., Conney A. H., Yagi H., Jerina D. M. Benzo[a]pyrene 7,8-dihydrodiol is more carcinogenic than benzo[a]pyrene in newborn mice. Nature. 1977 Mar 24;266(5600):378–380. doi: 10.1038/266378a0. [DOI] [PubMed] [Google Scholar]
  23. Kimchi A., Shure H., Revel M. Anti-mitogenic function of interferon-induced (2'-5')oligo(adenylate) and growth-related variations in enzymes that synthesize and degrade this oligonucleotide. Eur J Biochem. 1981;114(1):5–10. doi: 10.1111/j.1432-1033.1981.tb06163.x. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lefkowitz R. J., Stadel J. M., Caron M. G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem. 1983;52:159–186. doi: 10.1146/annurev.bi.52.070183.001111. [DOI] [PubMed] [Google Scholar]
  26. Milhaud P. G., Silhol M., Salehzada T., Lebleu B. Requirement for endocytosis of poly(rI).poly(rC) to generate toxicity on interferon-treated LM cells. J Gen Virol. 1987 Apr;68(Pt 4):1125–1134. doi: 10.1099/0022-1317-68-4-1125. [DOI] [PubMed] [Google Scholar]
  27. Milsted A., Cox R. P., Nilson J. H. Cyclic AMP regulates transcription of the genes encoding human chorionic gonadotropin with different kinetics. DNA. 1987 Jun;6(3):213–219. doi: 10.1089/dna.1987.6.213. [DOI] [PubMed] [Google Scholar]
  28. Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
  29. Panniers L. R., Clemens M. J. Inhibition of cell division by interferon: changes in cell cycle characteristics and in morphology of Ehrlich ascites tumour cells in culture. J Cell Sci. 1981 Apr;48:259–279. doi: 10.1242/jcs.48.1.259. [DOI] [PubMed] [Google Scholar]
  30. Petryshyn R., Chen J. J., London I. M. Growth-related expression of a double-stranded RNA-dependent protein kinase in 3T3 cells. J Biol Chem. 1984 Dec 10;259(23):14736–14742. [PubMed] [Google Scholar]
  31. Roesler W. J., Vandenbark G. R., Hanson R. W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem. 1988 Jul 5;263(19):9063–9066. [PubMed] [Google Scholar]
  32. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  33. Sassone-Corsi P., Visvader J., Ferland L., Mellon P. L., Verma I. M. Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev. 1988 Dec;2(12A):1529–1538. doi: 10.1101/gad.2.12a.1529. [DOI] [PubMed] [Google Scholar]
  34. Schneck J., Rager-Zisman B., Rosen O. M., Bloom B. R. Genetic analysis of the role of cAMP in mediating effects of interferon. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1879–1883. doi: 10.1073/pnas.79.6.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Silver B. J., Bokar J. A., Virgin J. B., Vallen E. A., Milsted A., Nilson J. H. Cyclic AMP regulation of the human glycoprotein hormone alpha-subunit gene is mediated by an 18-base-pair element. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2198–2202. doi: 10.1073/pnas.84.8.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smigel M. D., Ferguson K. M., Gilman A. G. Control of adenylate cyclase activity by G proteins. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;19:103–111. [PubMed] [Google Scholar]
  37. Strayer D. R., Weisband J., Carter W. A., Black P., Nidzgorski F., Cook A. W. Growth of astrocytomas in the human tumor clonogenic assay and sensitivity to mismatched dsRNA and interferons. Am J Clin Oncol. 1987 Aug;10(4):281–284. doi: 10.1097/00000421-198708000-00003. [DOI] [PubMed] [Google Scholar]
  38. Taylor-Papadimitriou J., Balkwill F. R. Implications for clinical application of new developments in interferon research. Biochim Biophys Acta. 1982 Sep 30;695(1):49–67. doi: 10.1016/0304-419x(82)90006-3. [DOI] [PubMed] [Google Scholar]
  39. Tovey M. G., Rochette-Egly C., Castagna M. Effect of interferon on concentrations of cyclic nucleotides in cultured cells. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3890–3893. doi: 10.1073/pnas.76.8.3890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tsukada T., Fink J. S., Mandel G., Goodman R. H. Identification of a region in the human vasoactive intestinal polypeptide gene responsible for regulation by cyclic AMP. J Biol Chem. 1987 Jun 25;262(18):8743–8747. [PubMed] [Google Scholar]
  41. Wells V., Mallucci L. Expression of the 2-5A system during the cell cycle. Exp Cell Res. 1985 Jul;159(1):27–36. doi: 10.1016/s0014-4827(85)80034-3. [DOI] [PubMed] [Google Scholar]
  42. Yap W. H., Teo T. S., McCoy E., Tan Y. H. Rapid and transient rise in diacylglycerol concentration in Daudi cells exposed to interferon. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7765–7769. doi: 10.1073/pnas.83.20.7765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yoshida I., Azuma M. Adsorption of poly rI:rC on cell membrane participating and nonparticipating in interferon induction. J Interferon Res. 1985 Winter;5(1):1–10. doi: 10.1089/jir.1985.5.1. [DOI] [PubMed] [Google Scholar]
  44. Young W. S., 3rd, Shepard E. A., Burch R. M. Plasma hyperosmolality increases G protein and 3',5'-cyclic adenosine monophosphate synthesis in the paraventricular and supraoptic nuclei. Mol Endocrinol. 1987 Dec;1(12):884–888. doi: 10.1210/mend-1-12-884. [DOI] [PubMed] [Google Scholar]
  45. Zoon K. C., Arnheiter H., Zur Nedden D., Fitzgerald D. J., Willingham M. C. Human interferon alpha enters cells by receptor-mediated endocytosis. Virology. 1983 Oct 15;130(1):195–203. doi: 10.1016/0042-6822(83)90127-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES