Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Oct 11;72(Pt 11):1562–1564. doi: 10.1107/S2056989016015279

Crystal structure of 2-oxo-2H-chromen-3-yl propano­ate

Eric Ziki a,*, Jules Yoda b, Abdoulaye Djandé b, Adama Saba b, Rita Kakou-Yao a
PMCID: PMC5095833  PMID: 27840708

In the title compound, C12H9O4, the dihedral angle between the coumarin ring system and the propionate side chain is 78.48 (8)°.

Keywords: crystal structure, π–π inter­actions, C—H⋯π inter­actions, chromane, quantum-chemical calculations

Abstract

In the title compound, C12H10O4, the dihedral angle between the coumarin ring system [maximum deviation = 0.033 (8) Å] and the propionate side chain is 78.48 (8)°. In the crystal, weak C—H⋯O hydrogen bonds generate inversion dimers and and C—H⋯π and π–π inter­actions link the dimers into a three-dimensional network. A quantum chemical calculation is in good agreement with the observed structure.

Chemical context  

Coumarin and its derivatives are widely recognized for their multiple biological activities, including anti­cancer (Lacy et al., 2004; Kostova, 2005), anti-inflammatory (Todeschini et al., 1998), anti­viral (Borges et al., 2005), anti­malarial (Agarwal et al., 2005) and anti­coagulant (Maurer et al., 1998) properties. As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound, (I).graphic file with name e-72-01562-scheme1.jpg

Structural commentary  

In compound (I) (Fig. 1), the coumarin ring system is almost planar [maximum deviation = 0.033 (1)Å] and is oriented at an angle of 70.84 (8)° with respect to the plane formed by the propano­ate group. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the C2—C3 [1.329 (2) Å] and C2—C1 [1.460 (2) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin-3-carboxamide derivatives (Gomes et al., 2016).

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are linked by pairs of C8—H8⋯O2(x, −y, 1 − z) weak hydrogen bonds to form Inline graphic(12) loops, which lie in a chain running along the c axis direction (Fig. 2). Weak aromatic π–π stacking inter­actions of 3.7956 (8) Å (Janiak, 2000) are present between the coumarin pyran ring (centroid Cg1) and benzene ring (centroid Cg2) of symmetry-related (−x, 1 − y, 1 − z) mol­ecules, thus forming a three-dimensional supra­molecular network. A weak C—H⋯Cg (π–ring) inter­action is also present (Figs. 3 and 4, and Table 1).

Figure 2.

Figure 2

View of an inversion dimer linked by a pair of C8—H8⋯O2 (−x, −y, −z + 1) inter­actions, generating an Inline graphic(12) loop. This dimers stack by unit translation along the c axis. H atoms not involved in hydrogen bonding have been omitted.

Figure 3.

Figure 3

A view of the crystal packing, showing the π–π stacking and C—H⋯π inter­actions (dashed lines). The green dots are ring centroids. H atoms not involved in the C—H⋯π inter­actions have been omitted for clarity.

Figure 4.

Figure 4

Part of the crystal structure of (I), showing C—H⋯π and π–π inter­actions as dashed lines. H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.59 3.4783 (19) 161
C5—H5⋯Cg2ii 0.93 2.78 3.4959 (16) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Theoretical calculations  

Quantum-chemical calculations were performed to compare with the experimental analysis. An ab-initio Hartree–Fock (HF) method was used with the standard basis set of 6-31G using the GAUSSIAN03 software package (Frisch et al., 2004; Dennington et al., 2007) to obtain the optimized mol­ecular structure. The computational results are in good agreement with the experimental crystallographic data (Table 2).

Table 2. Experimental and calculated bond lengths (Å).

Bond X-ray HF(6–31G)
O1—C1 1.3628 (17) 1.371
O1—C9 1.3769 (17) 1.378
O2—C1 1.2004 (18) 1.227
O3—C10 1.3713 (18) 1.359
O3—C2 1.3893 (17) 1.381
O4—C10 1.1932 (19) 1.21
C1—C2 1.460 (2) 1.468
C2—C3 1.329 (2) 1.355
C3—C4 1.4403 (19) 1.441
C4—C5 1.401 (2) 1.406
C4—C9 1.3928 (18) 1.407
C5—C6 1.370 (2) 1.387
C6—C7 1.386 (2) 1.395
C7—C8 1.379 (2) 1.383
C8—C9 1.3842 (19) 1.408
C10—C11 1.495 (2) 1.497
C11—C12 1.491 (3) 1.525

Synthesis and crystallization  

In a 100 ml round-necked flask topped with a water condenser were introduced successively 25 ml of dried diethyl ether, 6.17 × 10 −3 mol (≃ 0.8 ml) of propionic anhydride and 2.35 ml (4.7 molar equivalents) of dried pyridine. While stirring strongly, 6.17 × 10−3 mol (1 g) of 3-hy­droxy­coumarin was added in small portions over 30 min. The reaction mixture was left under agitation at room temperature for 3 h. The mixture was then poured in a separating funnel containing 40 ml of chloro­form and washed with diluted hydro­chloric acid solution until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with petroleum ether and recrystallized from a solvent mixture of chloro­form–hexane (1/3, v/v). Colourless prisms of the title compound were obtained in a yield of 65%, m. p. = 351–353 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions [C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.97 Å (methyl­ene)] and refined using a riding-model approximation with U iso(H) constrained to 1.2 (aromatic and methyl­ene group) or 1.5 (methyl group) times U eq of the respective parent atom.

Table 3. Experimental details.

Crystal data
Chemical formula C12H10O4
M r 218.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1179 (4), 5.7243 (2), 15.3275 (5)
β (°) 94.881 (3)
V3) 1059.36 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.87
Crystal size (mm) 0.46 × 0.16 × 0.08
 
Data collection
Diffractometer Agilent SuperNova Dual (Cu at zero) Source diffractometer with an AtlasS2 detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.778, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6028, 1930, 1655
R int 0.020
(sin θ/λ)max−1) 0.605
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.117, 1.06
No. of reflections 1930
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989016015279/hb7613sup1.cif

e-72-01562-sup1.cif (227.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016015279/hb7613Isup2.hkl

e-72-01562-Isup2.hkl (155.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016015279/hb7613Isup3.cml

CCDC reference: 1507161

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Spectropole Service of the faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.

supplementary crystallographic information

Crystal data

C12H10O4 F(000) = 456
Mr = 218.20 Dx = 1.368 Mg m3
Monoclinic, P21/c Melting point: 351 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54184 Å
a = 12.1179 (4) Å Cell parameters from 3028 reflections
b = 5.7243 (2) Å θ = 5.8–68.6°
c = 15.3275 (5) Å µ = 0.87 mm1
β = 94.881 (3)° T = 293 K
V = 1059.36 (6) Å3 Prism, colourless
Z = 4 0.46 × 0.16 × 0.08 mm

Data collection

Agilent SuperNova Dual (Cu at zero) Source diffractometer with an AtlasS2 detector 1930 independent reflections
Radiation source: sealed X-ray tube 1655 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.020
Detector resolution: 5.3048 pixels mm-1 θmax = 68.9°, θmin = 3.7°
ω scan h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −6→6
Tmin = 0.778, Tmax = 1.000 l = −15→18
6028 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.1085P] where P = (Fo2 + 2Fc2)/3
1930 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.16 e Å3
40 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.08845 (8) 0.19504 (17) 0.44462 (6) 0.0505 (3)
O3 0.36752 (8) 0.39585 (19) 0.41680 (7) 0.0567 (3)
C9 0.02550 (11) 0.3708 (2) 0.40435 (8) 0.0426 (3)
C2 0.25245 (11) 0.3964 (2) 0.40998 (9) 0.0466 (3)
C3 0.19407 (11) 0.5719 (2) 0.37284 (8) 0.0455 (3)
H3 0.2298 0.6985 0.3497 0.055*
C4 0.07494 (11) 0.5644 (2) 0.36879 (8) 0.0420 (3)
C8 −0.08834 (12) 0.3450 (3) 0.40123 (9) 0.0521 (3)
H8 −0.1198 0.2150 0.4258 0.063*
C1 0.20130 (12) 0.1982 (2) 0.45088 (9) 0.0492 (3)
O4 0.36176 (9) 0.1032 (2) 0.31915 (8) 0.0683 (3)
O2 0.24985 (10) 0.0406 (2) 0.48893 (8) 0.0695 (3)
C5 0.00553 (12) 0.7361 (2) 0.32863 (9) 0.0497 (3)
H5 0.0362 0.8676 0.3045 0.060*
C6 −0.10727 (13) 0.7114 (3) 0.32463 (10) 0.0566 (4)
H6 −0.1527 0.8257 0.2975 0.068*
C7 −0.15398 (12) 0.5169 (3) 0.36080 (10) 0.0567 (4)
H7 −0.2306 0.5022 0.3578 0.068*
C10 0.41542 (12) 0.2272 (3) 0.36892 (10) 0.0530 (3)
C11 0.53858 (13) 0.2315 (4) 0.38698 (13) 0.0728 (5)
H11A 0.5644 0.3905 0.3808 0.087*
H11B 0.5576 0.1839 0.4471 0.087*
C12 0.59736 (16) 0.0768 (5) 0.32791 (15) 0.0858 (6)
H12A 0.6758 0.0871 0.3428 0.129*
H12B 0.5806 0.1252 0.2683 0.129*
H12C 0.5736 −0.0817 0.3346 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0500 (5) 0.0463 (5) 0.0557 (5) −0.0037 (4) 0.0068 (4) 0.0091 (4)
O3 0.0398 (5) 0.0614 (6) 0.0686 (6) −0.0025 (4) 0.0019 (4) −0.0145 (5)
C9 0.0453 (7) 0.0438 (6) 0.0394 (6) −0.0015 (5) 0.0069 (5) −0.0014 (5)
C2 0.0395 (7) 0.0505 (7) 0.0499 (7) −0.0036 (5) 0.0052 (5) −0.0083 (5)
C3 0.0468 (7) 0.0425 (7) 0.0485 (7) −0.0072 (5) 0.0109 (5) −0.0037 (5)
C4 0.0459 (7) 0.0411 (6) 0.0398 (6) −0.0018 (5) 0.0083 (5) −0.0037 (5)
C8 0.0473 (7) 0.0570 (8) 0.0535 (7) −0.0083 (6) 0.0125 (6) −0.0022 (6)
C1 0.0506 (7) 0.0490 (7) 0.0479 (7) 0.0031 (6) 0.0034 (5) 0.0009 (6)
O4 0.0510 (6) 0.0805 (8) 0.0730 (7) −0.0006 (5) 0.0025 (5) −0.0238 (6)
O2 0.0665 (7) 0.0669 (7) 0.0749 (7) 0.0122 (6) 0.0041 (6) 0.0197 (6)
C5 0.0575 (8) 0.0450 (7) 0.0474 (7) 0.0025 (6) 0.0100 (6) 0.0013 (5)
C6 0.0548 (8) 0.0611 (9) 0.0540 (7) 0.0145 (7) 0.0065 (6) −0.0010 (6)
C7 0.0411 (7) 0.0715 (9) 0.0584 (8) 0.0027 (6) 0.0097 (6) −0.0069 (7)
C10 0.0450 (8) 0.0594 (8) 0.0545 (7) 0.0007 (6) 0.0038 (6) −0.0053 (6)
C11 0.0430 (8) 0.0917 (13) 0.0829 (11) 0.0053 (8) −0.0003 (7) −0.0168 (10)
C12 0.0526 (10) 0.1094 (16) 0.0951 (13) 0.0179 (10) 0.0050 (9) −0.0168 (12)

Geometric parameters (Å, º)

O1—C1 1.3628 (17) O4—C10 1.1932 (19)
O1—C9 1.3769 (17) C5—C6 1.370 (2)
O3—C10 1.3713 (18) C5—H5 0.9300
O3—C2 1.3893 (17) C6—C7 1.386 (2)
C9—C8 1.3842 (19) C6—H6 0.9300
C9—C4 1.3926 (18) C7—H7 0.9300
C2—C3 1.329 (2) C10—C11 1.495 (2)
C2—C1 1.460 (2) C11—C12 1.491 (3)
C3—C4 1.4403 (19) C11—H11A 0.9700
C3—H3 0.9300 C11—H11B 0.9700
C4—C5 1.401 (2) C12—H12A 0.9600
C8—C7 1.379 (2) C12—H12B 0.9600
C8—H8 0.9300 C12—H12C 0.9600
C1—O2 1.2004 (18)
C1—O1—C9 122.43 (10) C4—C5—H5 119.8
C10—O3—C2 115.41 (11) C5—C6—C7 120.31 (14)
O1—C9—C8 116.74 (12) C5—C6—H6 119.8
O1—C9—C4 121.11 (12) C7—C6—H6 119.8
C8—C9—C4 122.15 (13) C8—C7—C6 120.90 (14)
C3—C2—O3 121.88 (12) C8—C7—H7 119.6
C3—C2—C1 122.80 (12) C6—C7—H7 119.6
O3—C2—C1 115.22 (12) O4—C10—O3 121.89 (13)
C2—C3—C4 119.40 (12) O4—C10—C11 127.56 (15)
C2—C3—H3 120.3 O3—C10—C11 110.52 (13)
C4—C3—H3 120.3 C12—C11—C10 113.50 (15)
C9—C4—C5 117.88 (12) C12—C11—H11A 108.9
C9—C4—C3 118.03 (12) C10—C11—H11A 108.9
C5—C4—C3 124.05 (12) C12—C11—H11B 108.9
C7—C8—C9 118.32 (13) C10—C11—H11B 108.9
C7—C8—H8 120.8 H11A—C11—H11B 107.7
C9—C8—H8 120.8 C11—C12—H12A 109.5
O2—C1—O1 118.14 (13) C11—C12—H12B 109.5
O2—C1—C2 125.74 (14) H12A—C12—H12B 109.5
O1—C1—C2 116.12 (12) C11—C12—H12C 109.5
C6—C5—C4 120.43 (13) H12A—C12—H12C 109.5
C6—C5—H5 119.8 H12B—C12—H12C 109.5
C1—O1—C9—C8 179.07 (12) C9—O1—C1—C2 −1.73 (18)
C1—O1—C9—C4 −0.99 (18) C3—C2—C1—O2 −176.26 (14)
C10—O3—C2—C3 −113.91 (15) O3—C2—C1—O2 0.3 (2)
C10—O3—C2—C1 69.53 (17) C3—C2—C1—O1 3.69 (19)
O3—C2—C3—C4 −179.09 (11) O3—C2—C1—O1 −179.78 (10)
C1—C2—C3—C4 −2.8 (2) C9—C4—C5—C6 −0.27 (19)
O1—C9—C4—C5 179.85 (11) C3—C4—C5—C6 177.46 (12)
C8—C9—C4—C5 −0.21 (19) C4—C5—C6—C7 0.4 (2)
O1—C9—C4—C3 1.98 (17) C9—C8—C7—C6 −0.4 (2)
C8—C9—C4—C3 −178.08 (12) C5—C6—C7—C8 −0.1 (2)
C2—C3—C4—C9 −0.08 (18) C2—O3—C10—O4 6.2 (2)
C2—C3—C4—C5 −177.81 (12) C2—O3—C10—C11 −175.47 (14)
O1—C9—C8—C7 −179.53 (12) O4—C10—C11—C12 6.5 (3)
C4—C9—C8—C7 0.5 (2) O3—C10—C11—C12 −171.65 (17)
C9—O1—C1—O2 178.23 (13)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C4–C9 ring.

D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.93 2.59 3.4783 (19) 161
C5—H5···Cg2ii 0.93 2.78 3.4959 (16) 134

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y+1/2, −z+1/2.

References

  1. Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650. [DOI] [PubMed]
  2. Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  3. Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. [DOI] [PubMed]
  4. Dennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA.
  5. Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
  6. Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. [DOI] [PMC free article] [PubMed]
  7. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  8. Kostova, I. (2005). Curr. Med. Chem. Anticancer Agents, 5, 29–46. [DOI] [PubMed]
  9. Lacy, A. & O’Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. [DOI] [PubMed]
  10. Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989016015279/hb7613sup1.cif

e-72-01562-sup1.cif (227.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016015279/hb7613Isup2.hkl

e-72-01562-Isup2.hkl (155.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016015279/hb7613Isup3.cml

CCDC reference: 1507161

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES