Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Oct 25;72(Pt 11):1648–1650. doi: 10.1107/S2056989016016546

Crystal structure of the 1:2 co-crystal of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) and 4-chloro­phenol (1/2)

Augusto Rivera a,*, Jicli José Rojas a, Héctor Jairo Osorio b, Jaime Ríos-Motta a, Michael Bolte c
PMCID: PMC5095853  PMID: 27840728

The components of the ternary co-crystalline adduct are linked by inter­molecular O–H⋯N hydrogen bonds.

Keywords: crystal structure, co-crystalline adducts, hydrogen bonding, TATU

Abstract

In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chloro­phenol mol­ecules and one 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) mol­ecule in the asymmetric unit, the independent components are linked by two O—H⋯N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C—N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C—H⋯N hydrogen bonds. The crystal structure also features C—H⋯π contacts.

Chemical context  

Following our previous work on phenol–amine adducts based on cyclic aminal cages with phenol derivatives (Rivera et al., 2015a ,b ,c ), we report herein the synthesis and crystal structure of the title 1:2 complex assembled through hydrogen-bonding inter­actions between the aminal cage, 1,3,6,8-tetra­aza­tri­cyclo [4.3.1.13,8]undecane (TATU), with 4-chloro­phenol under solvent-free conditions at low temperature.graphic file with name e-72-01648-scheme1.jpg

TATU, a small tricyclic aminal cage, is an inter­esting option for studying hydrogen-bonding situations as it has four nitro­gen atoms as potential hydrogen-bond acceptors. These N atoms have two different environments, N1 and N2 from the ethyl­ene fragment (NCH2CH2N) and N3 and N4 from the 1,1-gem-diaminic units. These present two discrete options for hydrogen bonding to the aminal cage. With different types of phenols, the preference for a particular hydrogen-bond-inter­action site depends strongly upon the lone-pair orbital hybridization of the nitro­gen atom (Rivera et al., 2007). Studies on phenol complexes with tertiary amines in the solid state show that the proton transfer depends not only on the ΔpKa (pKa amine − pKa acid) value but also on steric and packing effects (Majerz & Sawka-Dobrowolska, 1996). In the structure found for the three-component aggregates observed here, both types of nitro­gen atom mentioned above are involved in hydrogen bonding with N1 and N3 acting as hydrogen-bond acceptors. The reaction to produce the co-crystal occurs efficiently in the solid state by grinding a mixture of finely powdered TATU and 4-chloro­phenol at room temperature; there are no by-products, and the work-up procedure is easy.

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit comprises two crystallographically independent 4-chloro­phenol mol­ecules and one 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) mol­ecule. The phenols are linked to the aminal cage by two O—H⋯N hydrogen bonds (Table 1), forming 2:1 hydrogen-bonded aggregates. This is similar to the situation observed in the structure of the 2:1 co-crystal of 4-nitro­phenol and TATU (Rivera et al., 2015a ) which also crystallizes in the P21/c space group and has two different types of N atom acting as the hydrogen-bond acceptors. The measured dimensions of the aminal cage structure in the present adduct are similar to the corresponding values in this related structure. The observed N—CH2 bond lengths are longer than those found in a co-crystal formed between TATU and hydo­quinone (Rivera et al., 2007). This is presumably related to the formation of strong hydrogen bonds by the N1 and N3 hydrogen atoms.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg8 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (3) 1.91 (3) 2.7824 (16) 172 (2)
O2—H2⋯N3 0.87 (2) 1.86 (2) 2.7186 (16) 167 (2)
C15—H15⋯N2i 0.95 2.56 3.4491 (18) 156
C2—H2ACg8ii 0.99 2.79 3.7348 (18) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

A comparison of the O—H⋯N hydrogen bonds in the title compound with those found for the nitro­phenyl analogue (Rivera, et al., 2015a ) reveal that both N⋯O distances are significantly longer in the current structure, suggesting that the hydrogen bonds may be somewhat weaker.

Supra­molecular features  

In the crystal of title compound, O1—H1⋯N1 and C15—H15⋯N2 hydrogen bonds form columns of TATU mol­ecules and O1 chloro­phenol mol­ecules along the c axis, Fig. 2. The columns are linked by O2—H2⋯N3 hydrogen bonds on one side and C2—H2ACg8 contacts on the other (Cg8 is the centroid of the C11–C16 ring).

Figure 2.

Figure 2

The crystal packing of the title compound, showing the chain that extends along the c-axis direction. C—H⋯N and O—H⋯N hydrogen bonds are drawn as dashed lines

Database survey  

Only three comparable structures were found in the Cambridge Structural Database (Groom et al., 2016),, namely 1,3,6,8-tetra-aza­tri­cyclo­(4.3.1.13,8)undecane hydro­quinone (HICTOD; Rivera et al., 2007), 3,6,8-tri­aza-1-azoniatri­cyclo­[4.3.1.13,8]undecane penta­chloro­phenolate monohydrate (OMODEA; Rivera et al., 2011) and 4-nitro­phenol 1,3,6,8-tetra-aza­tri­cyclo­[4.3.1.13,8]undecane (VUXMEI; Rivera et al., 2015a ). These structures have already been discussed above.

Synthesis and crystallization  

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) (154 mg, 1 mmol) and 4-chloro­phenol (257 mg, 2 mmol) was mixed thoroughly in a mortar and then ground at room temperature for 15 min. Progress of the reaction was monitored by TLC. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature (72% yield, m.p. = 334–336 K)

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in difference electron-density maps. The hydroxyl H atoms were refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with U iso(H) values set at 1.2U eq of the parent atom (1.5 for methyl groups).

Table 2. Experimental details.

Crystal data
Chemical formula C7H14N4·2C6H5ClO
M r 411.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 5.9495 (3), 27.6927 (8), 11.9402 (5)
β (°) 92.585 (3)
V3) 1965.24 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.26 × 0.25 × 0.24
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001)
T min, T max 0.604, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37763, 4251, 4105
R int 0.045
(sin θ/λ)max−1) 0.640
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.109, 1.09
No. of reflections 4251
No. of parameters 253
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.26

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and XP in SHELXTL-Plus (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511sup1.cif

e-72-01648-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511Isup2.hkl

e-72-01648-Isup2.hkl (338.8KB, hkl)

CCDC reference: 1510135

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship.

supplementary crystallographic information

Crystal data

C7H14N4·2C6H5ClO F(000) = 864
Mr = 411.32 Dx = 1.390 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.9495 (3) Å Cell parameters from 37763 reflections
b = 27.6927 (8) Å θ = 1.7–27.6°
c = 11.9402 (5) Å µ = 0.35 mm1
β = 92.585 (3)° T = 173 K
V = 1965.24 (14) Å3 Block, colourless
Z = 4 0.26 × 0.25 × 0.24 mm

Data collection

STOE IPDS II two-circle diffractometer 4105 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.045
ω scans θmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) h = −7→7
Tmin = 0.604, Tmax = 1.000 k = −35→35
37763 measured reflections l = −15→15
4251 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6451P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max = 0.002
S = 1.09 Δρmax = 0.40 e Å3
4251 reflections Δρmin = −0.26 e Å3
253 parameters Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.062 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.04590 (7) 0.26962 (2) −0.10224 (3) 0.04449 (15)
O1 0.5641 (2) 0.35658 (5) 0.24199 (10) 0.0479 (3)
H1 0.510 (4) 0.3572 (9) 0.310 (2) 0.073 (7)*
C11 0.4191 (3) 0.33578 (5) 0.16530 (12) 0.0356 (3)
C12 0.2099 (3) 0.31750 (6) 0.19246 (12) 0.0387 (3)
H12 0.1644 0.3193 0.2676 0.046*
C13 0.0679 (2) 0.29680 (5) 0.11068 (12) 0.0367 (3)
H13 −0.0747 0.2845 0.1293 0.044*
C14 0.1366 (2) 0.29428 (5) 0.00163 (12) 0.0339 (3)
C15 0.3445 (2) 0.31185 (5) −0.02693 (12) 0.0348 (3)
H15 0.3898 0.3097 −0.1020 0.042*
C16 0.4855 (2) 0.33256 (5) 0.05517 (12) 0.0350 (3)
H16 0.6283 0.3447 0.0362 0.042*
Cl2 1.00806 (8) 0.58275 (2) 1.06573 (4) 0.05235 (16)
O2 0.7563 (2) 0.49889 (4) 0.62512 (9) 0.0406 (3)
H2 0.655 (4) 0.4764 (8) 0.6299 (19) 0.059 (6)*
C21 0.8062 (2) 0.51843 (5) 0.72828 (12) 0.0328 (3)
C22 1.0146 (2) 0.54078 (5) 0.74570 (13) 0.0376 (3)
H22 1.1157 0.5421 0.6864 0.045*
C23 1.0755 (2) 0.56101 (5) 0.84860 (14) 0.0391 (3)
H23 1.2175 0.5763 0.8601 0.047*
C24 0.9276 (3) 0.55872 (5) 0.93448 (13) 0.0367 (3)
C25 0.7182 (3) 0.53749 (5) 0.91821 (14) 0.0406 (3)
H25 0.6167 0.5367 0.9774 0.049*
C26 0.6576 (2) 0.51743 (5) 0.81477 (14) 0.0382 (3)
H26 0.5137 0.5029 0.8030 0.046*
N1 0.43277 (18) 0.36094 (4) 0.46248 (10) 0.0308 (3)
N2 0.44381 (19) 0.33973 (4) 0.69815 (10) 0.0324 (3)
N3 0.47481 (19) 0.42152 (4) 0.61627 (10) 0.0310 (3)
N4 0.12298 (18) 0.37751 (4) 0.59049 (9) 0.0310 (3)
C1 0.5461 (3) 0.31658 (5) 0.49947 (13) 0.0385 (3)
H1A 0.7030 0.3179 0.4754 0.046*
H1B 0.4717 0.2892 0.4595 0.046*
C2 0.5526 (3) 0.30537 (6) 0.62630 (14) 0.0393 (3)
H2A 0.4821 0.2734 0.6366 0.047*
H2B 0.7122 0.3026 0.6527 0.047*
C3 0.5404 (2) 0.40561 (5) 0.50412 (11) 0.0307 (3)
H3A 0.5042 0.4318 0.4498 0.037*
H3B 0.7055 0.4009 0.5064 0.037*
C4 0.1997 (2) 0.34370 (5) 0.67956 (11) 0.0330 (3)
H4A 0.1345 0.3539 0.7506 0.040*
H4B 0.1389 0.3113 0.6609 0.040*
C5 0.1885 (2) 0.36212 (5) 0.47928 (11) 0.0329 (3)
H5A 0.1172 0.3841 0.4228 0.039*
H5B 0.1268 0.3294 0.4646 0.039*
C6 0.5478 (2) 0.38714 (5) 0.70586 (11) 0.0338 (3)
H6A 0.7129 0.3831 0.7043 0.041*
H6B 0.5145 0.4015 0.7792 0.041*
C7 0.2262 (2) 0.42473 (5) 0.61453 (12) 0.0339 (3)
H7A 0.1786 0.4365 0.6881 0.041*
H7B 0.1737 0.4482 0.5566 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0475 (2) 0.0507 (2) 0.0351 (2) −0.00710 (16) 0.00008 (15) −0.00103 (15)
O1 0.0452 (6) 0.0666 (8) 0.0328 (6) −0.0153 (5) 0.0091 (5) −0.0071 (5)
C11 0.0382 (7) 0.0384 (7) 0.0307 (7) −0.0009 (6) 0.0052 (5) −0.0002 (5)
C12 0.0437 (8) 0.0445 (8) 0.0288 (7) −0.0034 (6) 0.0106 (6) −0.0010 (6)
C13 0.0364 (7) 0.0390 (7) 0.0353 (7) −0.0010 (6) 0.0087 (6) 0.0023 (6)
C14 0.0385 (7) 0.0332 (7) 0.0301 (7) 0.0036 (5) 0.0016 (5) 0.0031 (5)
C15 0.0396 (7) 0.0375 (7) 0.0278 (6) 0.0049 (6) 0.0070 (5) 0.0053 (5)
C16 0.0365 (7) 0.0377 (7) 0.0314 (7) 0.0014 (6) 0.0084 (5) 0.0040 (5)
Cl2 0.0697 (3) 0.0430 (2) 0.0434 (2) 0.00721 (18) −0.00754 (19) −0.00895 (16)
O2 0.0466 (6) 0.0377 (5) 0.0373 (6) −0.0086 (5) 0.0001 (4) 0.0005 (4)
C21 0.0355 (7) 0.0269 (6) 0.0360 (7) 0.0002 (5) 0.0003 (5) 0.0035 (5)
C22 0.0357 (7) 0.0348 (7) 0.0428 (8) −0.0045 (6) 0.0079 (6) 0.0012 (6)
C23 0.0342 (7) 0.0344 (7) 0.0486 (8) −0.0033 (5) −0.0004 (6) −0.0018 (6)
C24 0.0437 (8) 0.0279 (6) 0.0381 (7) 0.0051 (5) −0.0018 (6) −0.0006 (5)
C25 0.0431 (8) 0.0358 (7) 0.0437 (8) −0.0002 (6) 0.0104 (6) 0.0003 (6)
C26 0.0317 (7) 0.0348 (7) 0.0485 (8) −0.0032 (5) 0.0051 (6) −0.0005 (6)
N1 0.0275 (5) 0.0360 (6) 0.0291 (5) −0.0013 (4) 0.0036 (4) −0.0042 (4)
N2 0.0306 (6) 0.0366 (6) 0.0300 (6) 0.0007 (4) 0.0005 (4) 0.0031 (5)
N3 0.0308 (6) 0.0320 (6) 0.0301 (6) −0.0003 (4) 0.0017 (4) −0.0026 (4)
N4 0.0257 (5) 0.0392 (6) 0.0282 (6) 0.0020 (4) 0.0030 (4) −0.0008 (5)
C1 0.0364 (7) 0.0358 (7) 0.0438 (8) 0.0028 (6) 0.0076 (6) −0.0058 (6)
C2 0.0353 (7) 0.0367 (7) 0.0459 (8) 0.0047 (6) 0.0016 (6) 0.0015 (6)
C3 0.0291 (6) 0.0340 (7) 0.0294 (6) −0.0022 (5) 0.0041 (5) 0.0003 (5)
C4 0.0294 (6) 0.0400 (7) 0.0298 (6) −0.0017 (5) 0.0051 (5) 0.0032 (5)
C5 0.0259 (6) 0.0457 (8) 0.0270 (6) −0.0020 (5) 0.0005 (5) −0.0027 (5)
C6 0.0328 (7) 0.0403 (7) 0.0280 (6) −0.0016 (5) −0.0030 (5) −0.0024 (5)
C7 0.0318 (7) 0.0347 (7) 0.0354 (7) 0.0057 (5) 0.0038 (5) −0.0025 (5)

Geometric parameters (Å, º)

Cl1—C14 1.7497 (15) N1—C3 1.4692 (17)
O1—C11 1.3579 (19) N1—C5 1.4766 (17)
O1—H1 0.88 (3) N2—C6 1.4524 (18)
C11—C16 1.3929 (19) N2—C2 1.4529 (19)
C11—C12 1.395 (2) N2—C4 1.4635 (17)
C12—C13 1.386 (2) N3—C3 1.4789 (17)
C12—H12 0.9500 N3—C7 1.4808 (17)
C13—C14 1.384 (2) N3—C6 1.4824 (18)
C13—H13 0.9500 N4—C5 1.4639 (17)
C14—C15 1.386 (2) N4—C7 1.4675 (18)
C15—C16 1.386 (2) N4—C4 1.4739 (17)
C15—H15 0.9500 C1—C2 1.545 (2)
C16—H16 0.9500 C1—H1A 0.9900
Cl2—C24 1.7494 (15) C1—H1B 0.9900
O2—C21 1.3657 (18) C2—H2A 0.9900
O2—H2 0.87 (2) C2—H2B 0.9900
C21—C26 1.390 (2) C3—H3A 0.9900
C21—C22 1.393 (2) C3—H3B 0.9900
C22—C23 1.384 (2) C4—H4A 0.9900
C22—H22 0.9500 C4—H4B 0.9900
C23—C24 1.382 (2) C5—H5A 0.9900
C23—H23 0.9500 C5—H5B 0.9900
C24—C25 1.384 (2) C6—H6A 0.9900
C25—C26 1.387 (2) C6—H6B 0.9900
C25—H25 0.9500 C7—H7A 0.9900
C26—H26 0.9500 C7—H7B 0.9900
N1—C1 1.4601 (19)
C11—O1—H1 112.3 (16) C7—N3—C6 107.96 (11)
O1—C11—C16 117.72 (13) C5—N4—C7 108.10 (11)
O1—C11—C12 122.92 (13) C5—N4—C4 112.53 (11)
C16—C11—C12 119.36 (14) C7—N4—C4 108.15 (11)
C13—C12—C11 120.54 (13) N1—C1—C2 117.17 (12)
C13—C12—H12 119.7 N1—C1—H1A 108.0
C11—C12—H12 119.7 C2—C1—H1A 108.0
C14—C13—C12 119.15 (13) N1—C1—H1B 108.0
C14—C13—H13 120.4 C2—C1—H1B 108.0
C12—C13—H13 120.4 H1A—C1—H1B 107.2
C13—C14—C15 121.22 (14) N2—C2—C1 117.06 (12)
C13—C14—Cl1 119.11 (12) N2—C2—H2A 108.0
C15—C14—Cl1 119.65 (11) C1—C2—H2A 108.0
C16—C15—C14 119.34 (13) N2—C2—H2B 108.0
C16—C15—H15 120.3 C1—C2—H2B 108.0
C14—C15—H15 120.3 H2A—C2—H2B 107.3
C15—C16—C11 120.39 (13) N1—C3—N3 115.37 (11)
C15—C16—H16 119.8 N1—C3—H3A 108.4
C11—C16—H16 119.8 N3—C3—H3A 108.4
C21—O2—H2 110.4 (15) N1—C3—H3B 108.4
O2—C21—C26 122.85 (13) N3—C3—H3B 108.4
O2—C21—C22 117.81 (13) H3A—C3—H3B 107.5
C26—C21—C22 119.33 (14) N2—C4—N4 115.47 (11)
C23—C22—C21 120.55 (14) N2—C4—H4A 108.4
C23—C22—H22 119.7 N4—C4—H4A 108.4
C21—C22—H22 119.7 N2—C4—H4B 108.4
C24—C23—C22 119.35 (14) N4—C4—H4B 108.4
C24—C23—H23 120.3 H4A—C4—H4B 107.5
C22—C23—H23 120.3 N4—C5—N1 115.69 (11)
C23—C24—C25 120.97 (14) N4—C5—H5A 108.4
C23—C24—Cl2 119.32 (12) N1—C5—H5A 108.4
C25—C24—Cl2 119.71 (12) N4—C5—H5B 108.4
C24—C25—C26 119.44 (14) N1—C5—H5B 108.4
C24—C25—H25 120.3 H5A—C5—H5B 107.4
C26—C25—H25 120.3 N2—C6—N3 115.14 (11)
C25—C26—C21 120.33 (14) N2—C6—H6A 108.5
C25—C26—H26 119.8 N3—C6—H6A 108.5
C21—C26—H26 119.8 N2—C6—H6B 108.5
C1—N1—C3 114.69 (11) N3—C6—H6B 108.5
C1—N1—C5 114.92 (11) H6A—C6—H6B 107.5
C3—N1—C5 110.62 (11) N4—C7—N3 111.00 (11)
C6—N2—C2 115.45 (12) N4—C7—H7A 109.4
C6—N2—C4 111.01 (11) N3—C7—H7A 109.4
C2—N2—C4 115.17 (12) N4—C7—H7B 109.4
C3—N3—C7 108.03 (10) N3—C7—H7B 109.4
C3—N3—C6 112.41 (11) H7A—C7—H7B 108.0
O1—C11—C12—C13 179.72 (15) C4—N2—C2—C1 65.17 (17)
C16—C11—C12—C13 −0.7 (2) N1—C1—C2—N2 0.5 (2)
C11—C12—C13—C14 0.3 (2) C1—N1—C3—N3 −85.46 (14)
C12—C13—C14—C15 0.3 (2) C5—N1—C3—N3 46.49 (15)
C12—C13—C14—Cl1 −178.29 (12) C7—N3—C3—N1 −53.85 (15)
C13—C14—C15—C16 −0.4 (2) C6—N3—C3—N1 65.16 (15)
Cl1—C14—C15—C16 178.18 (11) C6—N2—C4—N4 47.85 (15)
C14—C15—C16—C11 −0.1 (2) C2—N2—C4—N4 −85.71 (15)
O1—C11—C16—C15 −179.79 (14) C5—N4—C4—N2 65.04 (15)
C12—C11—C16—C15 0.6 (2) C7—N4—C4—N2 −54.30 (15)
O2—C21—C22—C23 −179.63 (13) C7—N4—C5—N1 54.75 (15)
C26—C21—C22—C23 1.2 (2) C4—N4—C5—N1 −64.62 (16)
C21—C22—C23—C24 0.2 (2) C1—N1—C5—N4 84.81 (15)
C22—C23—C24—C25 −1.5 (2) C3—N1—C5—N4 −47.03 (16)
C22—C23—C24—Cl2 178.15 (12) C2—N2—C6—N3 85.50 (15)
C23—C24—C25—C26 1.2 (2) C4—N2—C6—N3 −47.92 (15)
Cl2—C24—C25—C26 −178.40 (12) C3—N3—C6—N2 −64.54 (15)
C24—C25—C26—C21 0.3 (2) C7—N3—C6—N2 54.51 (15)
O2—C21—C26—C25 179.42 (14) C5—N4—C7—N3 −61.56 (14)
C22—C21—C26—C25 −1.5 (2) C4—N4—C7—N3 60.53 (14)
C3—N1—C1—C2 64.76 (16) C3—N3—C7—N4 61.15 (14)
C5—N1—C1—C2 −65.11 (16) C6—N3—C7—N4 −60.65 (14)
C6—N2—C2—C1 −66.31 (17)

Hydrogen-bond geometry (Å, º)

Cg8 is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.88 (3) 1.91 (3) 2.7824 (16) 172 (2)
O2—H2···N3 0.87 (2) 1.86 (2) 2.7186 (16) 167 (2)
C15—H15···N2i 0.95 2.56 3.4491 (18) 156
C2—H2A···Cg8ii 0.99 2.79 3.7348 (18) 160

Symmetry codes: (i) x, y, z−1; (ii) x, −y−1/2, z−1/2.

References

  1. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  2. Majerz, I. & Sawka-Dobrowolska, W. (1996). J. Chem. Crystallogr. 26, 147–152.
  3. Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142–146.
  4. Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356–1360. [DOI] [PMC free article] [PubMed]
  5. Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 737–740. [DOI] [PMC free article] [PubMed]
  6. Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591–595.
  7. Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015c). Acta Cryst. E71, 463–465. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511sup1.cif

e-72-01648-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511Isup2.hkl

e-72-01648-Isup2.hkl (338.8KB, hkl)

CCDC reference: 1510135

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES