The components of the ternary co-crystalline adduct are linked by intermolecular O–H⋯N hydrogen bonds.
Keywords: crystal structure, co-crystalline adducts, hydrogen bonding, TATU
Abstract
In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule in the asymmetric unit, the independent components are linked by two O—H⋯N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C—N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C—H⋯N hydrogen bonds. The crystal structure also features C—H⋯π contacts.
Chemical context
Following our previous work on phenol–amine adducts based on cyclic aminal cages with phenol derivatives (Rivera et al., 2015a
▸,b
▸,c
▸), we report herein the synthesis and crystal structure of the title 1:2 complex assembled through hydrogen-bonding interactions between the aminal cage, 1,3,6,8-tetraazatricyclo [4.3.1.13,8]undecane (TATU), with 4-chlorophenol under solvent-free conditions at low temperature.
TATU, a small tricyclic aminal cage, is an interesting option for studying hydrogen-bonding situations as it has four nitrogen atoms as potential hydrogen-bond acceptors. These N atoms have two different environments, N1 and N2 from the ethylene fragment (NCH2CH2N) and N3 and N4 from the 1,1-gem-diaminic units. These present two discrete options for hydrogen bonding to the aminal cage. With different types of phenols, the preference for a particular hydrogen-bond-interaction site depends strongly upon the lone-pair orbital hybridization of the nitrogen atom (Rivera et al., 2007 ▸). Studies on phenol complexes with tertiary amines in the solid state show that the proton transfer depends not only on the ΔpKa (pKa amine − pKa acid) value but also on steric and packing effects (Majerz & Sawka-Dobrowolska, 1996 ▸). In the structure found for the three-component aggregates observed here, both types of nitrogen atom mentioned above are involved in hydrogen bonding with N1 and N3 acting as hydrogen-bond acceptors. The reaction to produce the co-crystal occurs efficiently in the solid state by grinding a mixture of finely powdered TATU and 4-chlorophenol at room temperature; there are no by-products, and the work-up procedure is easy.
Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1 ▸. The asymmetric unit comprises two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule. The phenols are linked to the aminal cage by two O—H⋯N hydrogen bonds (Table 1 ▸), forming 2:1 hydrogen-bonded aggregates. This is similar to the situation observed in the structure of the 2:1 co-crystal of 4-nitrophenol and TATU (Rivera et al., 2015a ▸) which also crystallizes in the P21/c space group and has two different types of N atom acting as the hydrogen-bond acceptors. The measured dimensions of the aminal cage structure in the present adduct are similar to the corresponding values in this related structure. The observed N—CH2 bond lengths are longer than those found in a co-crystal formed between TATU and hydoquinone (Rivera et al., 2007 ▸). This is presumably related to the formation of strong hydrogen bonds by the N1 and N3 hydrogen atoms.
Figure 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.
Table 1. Hydrogen-bond geometry (Å, °).
Cg8 is the centroid of the C11–C16 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯N1 | 0.88 (3) | 1.91 (3) | 2.7824 (16) | 172 (2) |
| O2—H2⋯N3 | 0.87 (2) | 1.86 (2) | 2.7186 (16) | 167 (2) |
| C15—H15⋯N2i | 0.95 | 2.56 | 3.4491 (18) | 156 |
| C2—H2A⋯Cg8ii | 0.99 | 2.79 | 3.7348 (18) | 160 |
Symmetry codes: (i)
; (ii)
.
A comparison of the O—H⋯N hydrogen bonds in the title compound with those found for the nitrophenyl analogue (Rivera, et al., 2015a ▸) reveal that both N⋯O distances are significantly longer in the current structure, suggesting that the hydrogen bonds may be somewhat weaker.
Supramolecular features
In the crystal of title compound, O1—H1⋯N1 and C15—H15⋯N2 hydrogen bonds form columns of TATU molecules and O1 chlorophenol molecules along the c axis, Fig. 2 ▸. The columns are linked by O2—H2⋯N3 hydrogen bonds on one side and C2—H2A⋯Cg8 contacts on the other (Cg8 is the centroid of the C11–C16 ring).
Figure 2.
The crystal packing of the title compound, showing the chain that extends along the c-axis direction. C—H⋯N and O—H⋯N hydrogen bonds are drawn as dashed lines
Database survey
Only three comparable structures were found in the Cambridge Structural Database (Groom et al., 2016 ▸),, namely 1,3,6,8-tetra-azatricyclo(4.3.1.13,8)undecane hydroquinone (HICTOD; Rivera et al., 2007 ▸), 3,6,8-triaza-1-azoniatricyclo[4.3.1.13,8]undecane pentachlorophenolate monohydrate (OMODEA; Rivera et al., 2011 ▸) and 4-nitrophenol 1,3,6,8-tetra-azatricyclo[4.3.1.13,8]undecane (VUXMEI; Rivera et al., 2015a ▸). These structures have already been discussed above.
Synthesis and crystallization
A mixture of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) (154 mg, 1 mmol) and 4-chlorophenol (257 mg, 2 mmol) was mixed thoroughly in a mortar and then ground at room temperature for 15 min. Progress of the reaction was monitored by TLC. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature (72% yield, m.p. = 334–336 K)
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were located in difference electron-density maps. The hydroxyl H atoms were refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with U iso(H) values set at 1.2U eq of the parent atom (1.5 for methyl groups).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C7H14N4·2C6H5ClO |
| M r | 411.32 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 173 |
| a, b, c (Å) | 5.9495 (3), 27.6927 (8), 11.9402 (5) |
| β (°) | 92.585 (3) |
| V (Å3) | 1965.24 (14) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.35 |
| Crystal size (mm) | 0.26 × 0.25 × 0.24 |
| Data collection | |
| Diffractometer | STOE IPDS II two-circle |
| Absorption correction | Multi-scan (X-AREA; Stoe & Cie, 2001 ▸) |
| T min, T max | 0.604, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 37763, 4251, 4105 |
| R int | 0.045 |
| (sin θ/λ)max (Å−1) | 0.640 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.109, 1.09 |
| No. of reflections | 4251 |
| No. of parameters | 253 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.40, −0.26 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511Isup2.hkl
CCDC reference: 1510135
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship.
supplementary crystallographic information
Crystal data
| C7H14N4·2C6H5ClO | F(000) = 864 |
| Mr = 411.32 | Dx = 1.390 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.9495 (3) Å | Cell parameters from 37763 reflections |
| b = 27.6927 (8) Å | θ = 1.7–27.6° |
| c = 11.9402 (5) Å | µ = 0.35 mm−1 |
| β = 92.585 (3)° | T = 173 K |
| V = 1965.24 (14) Å3 | Block, colourless |
| Z = 4 | 0.26 × 0.25 × 0.24 mm |
Data collection
| STOE IPDS II two-circle diffractometer | 4105 reflections with I > 2σ(I) |
| Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.045 |
| ω scans | θmax = 27.1°, θmin = 1.9° |
| Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) | h = −7→7 |
| Tmin = 0.604, Tmax = 1.000 | k = −35→35 |
| 37763 measured reflections | l = −15→15 |
| 4251 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6451P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.109 | (Δ/σ)max = 0.002 |
| S = 1.09 | Δρmax = 0.40 e Å−3 |
| 4251 reflections | Δρmin = −0.26 e Å−3 |
| 253 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.062 (7) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | −0.04590 (7) | 0.26962 (2) | −0.10224 (3) | 0.04449 (15) | |
| O1 | 0.5641 (2) | 0.35658 (5) | 0.24199 (10) | 0.0479 (3) | |
| H1 | 0.510 (4) | 0.3572 (9) | 0.310 (2) | 0.073 (7)* | |
| C11 | 0.4191 (3) | 0.33578 (5) | 0.16530 (12) | 0.0356 (3) | |
| C12 | 0.2099 (3) | 0.31750 (6) | 0.19246 (12) | 0.0387 (3) | |
| H12 | 0.1644 | 0.3193 | 0.2676 | 0.046* | |
| C13 | 0.0679 (2) | 0.29680 (5) | 0.11068 (12) | 0.0367 (3) | |
| H13 | −0.0747 | 0.2845 | 0.1293 | 0.044* | |
| C14 | 0.1366 (2) | 0.29428 (5) | 0.00163 (12) | 0.0339 (3) | |
| C15 | 0.3445 (2) | 0.31185 (5) | −0.02693 (12) | 0.0348 (3) | |
| H15 | 0.3898 | 0.3097 | −0.1020 | 0.042* | |
| C16 | 0.4855 (2) | 0.33256 (5) | 0.05517 (12) | 0.0350 (3) | |
| H16 | 0.6283 | 0.3447 | 0.0362 | 0.042* | |
| Cl2 | 1.00806 (8) | 0.58275 (2) | 1.06573 (4) | 0.05235 (16) | |
| O2 | 0.7563 (2) | 0.49889 (4) | 0.62512 (9) | 0.0406 (3) | |
| H2 | 0.655 (4) | 0.4764 (8) | 0.6299 (19) | 0.059 (6)* | |
| C21 | 0.8062 (2) | 0.51843 (5) | 0.72828 (12) | 0.0328 (3) | |
| C22 | 1.0146 (2) | 0.54078 (5) | 0.74570 (13) | 0.0376 (3) | |
| H22 | 1.1157 | 0.5421 | 0.6864 | 0.045* | |
| C23 | 1.0755 (2) | 0.56101 (5) | 0.84860 (14) | 0.0391 (3) | |
| H23 | 1.2175 | 0.5763 | 0.8601 | 0.047* | |
| C24 | 0.9276 (3) | 0.55872 (5) | 0.93448 (13) | 0.0367 (3) | |
| C25 | 0.7182 (3) | 0.53749 (5) | 0.91821 (14) | 0.0406 (3) | |
| H25 | 0.6167 | 0.5367 | 0.9774 | 0.049* | |
| C26 | 0.6576 (2) | 0.51743 (5) | 0.81477 (14) | 0.0382 (3) | |
| H26 | 0.5137 | 0.5029 | 0.8030 | 0.046* | |
| N1 | 0.43277 (18) | 0.36094 (4) | 0.46248 (10) | 0.0308 (3) | |
| N2 | 0.44381 (19) | 0.33973 (4) | 0.69815 (10) | 0.0324 (3) | |
| N3 | 0.47481 (19) | 0.42152 (4) | 0.61627 (10) | 0.0310 (3) | |
| N4 | 0.12298 (18) | 0.37751 (4) | 0.59049 (9) | 0.0310 (3) | |
| C1 | 0.5461 (3) | 0.31658 (5) | 0.49947 (13) | 0.0385 (3) | |
| H1A | 0.7030 | 0.3179 | 0.4754 | 0.046* | |
| H1B | 0.4717 | 0.2892 | 0.4595 | 0.046* | |
| C2 | 0.5526 (3) | 0.30537 (6) | 0.62630 (14) | 0.0393 (3) | |
| H2A | 0.4821 | 0.2734 | 0.6366 | 0.047* | |
| H2B | 0.7122 | 0.3026 | 0.6527 | 0.047* | |
| C3 | 0.5404 (2) | 0.40561 (5) | 0.50412 (11) | 0.0307 (3) | |
| H3A | 0.5042 | 0.4318 | 0.4498 | 0.037* | |
| H3B | 0.7055 | 0.4009 | 0.5064 | 0.037* | |
| C4 | 0.1997 (2) | 0.34370 (5) | 0.67956 (11) | 0.0330 (3) | |
| H4A | 0.1345 | 0.3539 | 0.7506 | 0.040* | |
| H4B | 0.1389 | 0.3113 | 0.6609 | 0.040* | |
| C5 | 0.1885 (2) | 0.36212 (5) | 0.47928 (11) | 0.0329 (3) | |
| H5A | 0.1172 | 0.3841 | 0.4228 | 0.039* | |
| H5B | 0.1268 | 0.3294 | 0.4646 | 0.039* | |
| C6 | 0.5478 (2) | 0.38714 (5) | 0.70586 (11) | 0.0338 (3) | |
| H6A | 0.7129 | 0.3831 | 0.7043 | 0.041* | |
| H6B | 0.5145 | 0.4015 | 0.7792 | 0.041* | |
| C7 | 0.2262 (2) | 0.42473 (5) | 0.61453 (12) | 0.0339 (3) | |
| H7A | 0.1786 | 0.4365 | 0.6881 | 0.041* | |
| H7B | 0.1737 | 0.4482 | 0.5566 | 0.041* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0475 (2) | 0.0507 (2) | 0.0351 (2) | −0.00710 (16) | 0.00008 (15) | −0.00103 (15) |
| O1 | 0.0452 (6) | 0.0666 (8) | 0.0328 (6) | −0.0153 (5) | 0.0091 (5) | −0.0071 (5) |
| C11 | 0.0382 (7) | 0.0384 (7) | 0.0307 (7) | −0.0009 (6) | 0.0052 (5) | −0.0002 (5) |
| C12 | 0.0437 (8) | 0.0445 (8) | 0.0288 (7) | −0.0034 (6) | 0.0106 (6) | −0.0010 (6) |
| C13 | 0.0364 (7) | 0.0390 (7) | 0.0353 (7) | −0.0010 (6) | 0.0087 (6) | 0.0023 (6) |
| C14 | 0.0385 (7) | 0.0332 (7) | 0.0301 (7) | 0.0036 (5) | 0.0016 (5) | 0.0031 (5) |
| C15 | 0.0396 (7) | 0.0375 (7) | 0.0278 (6) | 0.0049 (6) | 0.0070 (5) | 0.0053 (5) |
| C16 | 0.0365 (7) | 0.0377 (7) | 0.0314 (7) | 0.0014 (6) | 0.0084 (5) | 0.0040 (5) |
| Cl2 | 0.0697 (3) | 0.0430 (2) | 0.0434 (2) | 0.00721 (18) | −0.00754 (19) | −0.00895 (16) |
| O2 | 0.0466 (6) | 0.0377 (5) | 0.0373 (6) | −0.0086 (5) | 0.0001 (4) | 0.0005 (4) |
| C21 | 0.0355 (7) | 0.0269 (6) | 0.0360 (7) | 0.0002 (5) | 0.0003 (5) | 0.0035 (5) |
| C22 | 0.0357 (7) | 0.0348 (7) | 0.0428 (8) | −0.0045 (6) | 0.0079 (6) | 0.0012 (6) |
| C23 | 0.0342 (7) | 0.0344 (7) | 0.0486 (8) | −0.0033 (5) | −0.0004 (6) | −0.0018 (6) |
| C24 | 0.0437 (8) | 0.0279 (6) | 0.0381 (7) | 0.0051 (5) | −0.0018 (6) | −0.0006 (5) |
| C25 | 0.0431 (8) | 0.0358 (7) | 0.0437 (8) | −0.0002 (6) | 0.0104 (6) | 0.0003 (6) |
| C26 | 0.0317 (7) | 0.0348 (7) | 0.0485 (8) | −0.0032 (5) | 0.0051 (6) | −0.0005 (6) |
| N1 | 0.0275 (5) | 0.0360 (6) | 0.0291 (5) | −0.0013 (4) | 0.0036 (4) | −0.0042 (4) |
| N2 | 0.0306 (6) | 0.0366 (6) | 0.0300 (6) | 0.0007 (4) | 0.0005 (4) | 0.0031 (5) |
| N3 | 0.0308 (6) | 0.0320 (6) | 0.0301 (6) | −0.0003 (4) | 0.0017 (4) | −0.0026 (4) |
| N4 | 0.0257 (5) | 0.0392 (6) | 0.0282 (6) | 0.0020 (4) | 0.0030 (4) | −0.0008 (5) |
| C1 | 0.0364 (7) | 0.0358 (7) | 0.0438 (8) | 0.0028 (6) | 0.0076 (6) | −0.0058 (6) |
| C2 | 0.0353 (7) | 0.0367 (7) | 0.0459 (8) | 0.0047 (6) | 0.0016 (6) | 0.0015 (6) |
| C3 | 0.0291 (6) | 0.0340 (7) | 0.0294 (6) | −0.0022 (5) | 0.0041 (5) | 0.0003 (5) |
| C4 | 0.0294 (6) | 0.0400 (7) | 0.0298 (6) | −0.0017 (5) | 0.0051 (5) | 0.0032 (5) |
| C5 | 0.0259 (6) | 0.0457 (8) | 0.0270 (6) | −0.0020 (5) | 0.0005 (5) | −0.0027 (5) |
| C6 | 0.0328 (7) | 0.0403 (7) | 0.0280 (6) | −0.0016 (5) | −0.0030 (5) | −0.0024 (5) |
| C7 | 0.0318 (7) | 0.0347 (7) | 0.0354 (7) | 0.0057 (5) | 0.0038 (5) | −0.0025 (5) |
Geometric parameters (Å, º)
| Cl1—C14 | 1.7497 (15) | N1—C3 | 1.4692 (17) |
| O1—C11 | 1.3579 (19) | N1—C5 | 1.4766 (17) |
| O1—H1 | 0.88 (3) | N2—C6 | 1.4524 (18) |
| C11—C16 | 1.3929 (19) | N2—C2 | 1.4529 (19) |
| C11—C12 | 1.395 (2) | N2—C4 | 1.4635 (17) |
| C12—C13 | 1.386 (2) | N3—C3 | 1.4789 (17) |
| C12—H12 | 0.9500 | N3—C7 | 1.4808 (17) |
| C13—C14 | 1.384 (2) | N3—C6 | 1.4824 (18) |
| C13—H13 | 0.9500 | N4—C5 | 1.4639 (17) |
| C14—C15 | 1.386 (2) | N4—C7 | 1.4675 (18) |
| C15—C16 | 1.386 (2) | N4—C4 | 1.4739 (17) |
| C15—H15 | 0.9500 | C1—C2 | 1.545 (2) |
| C16—H16 | 0.9500 | C1—H1A | 0.9900 |
| Cl2—C24 | 1.7494 (15) | C1—H1B | 0.9900 |
| O2—C21 | 1.3657 (18) | C2—H2A | 0.9900 |
| O2—H2 | 0.87 (2) | C2—H2B | 0.9900 |
| C21—C26 | 1.390 (2) | C3—H3A | 0.9900 |
| C21—C22 | 1.393 (2) | C3—H3B | 0.9900 |
| C22—C23 | 1.384 (2) | C4—H4A | 0.9900 |
| C22—H22 | 0.9500 | C4—H4B | 0.9900 |
| C23—C24 | 1.382 (2) | C5—H5A | 0.9900 |
| C23—H23 | 0.9500 | C5—H5B | 0.9900 |
| C24—C25 | 1.384 (2) | C6—H6A | 0.9900 |
| C25—C26 | 1.387 (2) | C6—H6B | 0.9900 |
| C25—H25 | 0.9500 | C7—H7A | 0.9900 |
| C26—H26 | 0.9500 | C7—H7B | 0.9900 |
| N1—C1 | 1.4601 (19) | ||
| C11—O1—H1 | 112.3 (16) | C7—N3—C6 | 107.96 (11) |
| O1—C11—C16 | 117.72 (13) | C5—N4—C7 | 108.10 (11) |
| O1—C11—C12 | 122.92 (13) | C5—N4—C4 | 112.53 (11) |
| C16—C11—C12 | 119.36 (14) | C7—N4—C4 | 108.15 (11) |
| C13—C12—C11 | 120.54 (13) | N1—C1—C2 | 117.17 (12) |
| C13—C12—H12 | 119.7 | N1—C1—H1A | 108.0 |
| C11—C12—H12 | 119.7 | C2—C1—H1A | 108.0 |
| C14—C13—C12 | 119.15 (13) | N1—C1—H1B | 108.0 |
| C14—C13—H13 | 120.4 | C2—C1—H1B | 108.0 |
| C12—C13—H13 | 120.4 | H1A—C1—H1B | 107.2 |
| C13—C14—C15 | 121.22 (14) | N2—C2—C1 | 117.06 (12) |
| C13—C14—Cl1 | 119.11 (12) | N2—C2—H2A | 108.0 |
| C15—C14—Cl1 | 119.65 (11) | C1—C2—H2A | 108.0 |
| C16—C15—C14 | 119.34 (13) | N2—C2—H2B | 108.0 |
| C16—C15—H15 | 120.3 | C1—C2—H2B | 108.0 |
| C14—C15—H15 | 120.3 | H2A—C2—H2B | 107.3 |
| C15—C16—C11 | 120.39 (13) | N1—C3—N3 | 115.37 (11) |
| C15—C16—H16 | 119.8 | N1—C3—H3A | 108.4 |
| C11—C16—H16 | 119.8 | N3—C3—H3A | 108.4 |
| C21—O2—H2 | 110.4 (15) | N1—C3—H3B | 108.4 |
| O2—C21—C26 | 122.85 (13) | N3—C3—H3B | 108.4 |
| O2—C21—C22 | 117.81 (13) | H3A—C3—H3B | 107.5 |
| C26—C21—C22 | 119.33 (14) | N2—C4—N4 | 115.47 (11) |
| C23—C22—C21 | 120.55 (14) | N2—C4—H4A | 108.4 |
| C23—C22—H22 | 119.7 | N4—C4—H4A | 108.4 |
| C21—C22—H22 | 119.7 | N2—C4—H4B | 108.4 |
| C24—C23—C22 | 119.35 (14) | N4—C4—H4B | 108.4 |
| C24—C23—H23 | 120.3 | H4A—C4—H4B | 107.5 |
| C22—C23—H23 | 120.3 | N4—C5—N1 | 115.69 (11) |
| C23—C24—C25 | 120.97 (14) | N4—C5—H5A | 108.4 |
| C23—C24—Cl2 | 119.32 (12) | N1—C5—H5A | 108.4 |
| C25—C24—Cl2 | 119.71 (12) | N4—C5—H5B | 108.4 |
| C24—C25—C26 | 119.44 (14) | N1—C5—H5B | 108.4 |
| C24—C25—H25 | 120.3 | H5A—C5—H5B | 107.4 |
| C26—C25—H25 | 120.3 | N2—C6—N3 | 115.14 (11) |
| C25—C26—C21 | 120.33 (14) | N2—C6—H6A | 108.5 |
| C25—C26—H26 | 119.8 | N3—C6—H6A | 108.5 |
| C21—C26—H26 | 119.8 | N2—C6—H6B | 108.5 |
| C1—N1—C3 | 114.69 (11) | N3—C6—H6B | 108.5 |
| C1—N1—C5 | 114.92 (11) | H6A—C6—H6B | 107.5 |
| C3—N1—C5 | 110.62 (11) | N4—C7—N3 | 111.00 (11) |
| C6—N2—C2 | 115.45 (12) | N4—C7—H7A | 109.4 |
| C6—N2—C4 | 111.01 (11) | N3—C7—H7A | 109.4 |
| C2—N2—C4 | 115.17 (12) | N4—C7—H7B | 109.4 |
| C3—N3—C7 | 108.03 (10) | N3—C7—H7B | 109.4 |
| C3—N3—C6 | 112.41 (11) | H7A—C7—H7B | 108.0 |
| O1—C11—C12—C13 | 179.72 (15) | C4—N2—C2—C1 | 65.17 (17) |
| C16—C11—C12—C13 | −0.7 (2) | N1—C1—C2—N2 | 0.5 (2) |
| C11—C12—C13—C14 | 0.3 (2) | C1—N1—C3—N3 | −85.46 (14) |
| C12—C13—C14—C15 | 0.3 (2) | C5—N1—C3—N3 | 46.49 (15) |
| C12—C13—C14—Cl1 | −178.29 (12) | C7—N3—C3—N1 | −53.85 (15) |
| C13—C14—C15—C16 | −0.4 (2) | C6—N3—C3—N1 | 65.16 (15) |
| Cl1—C14—C15—C16 | 178.18 (11) | C6—N2—C4—N4 | 47.85 (15) |
| C14—C15—C16—C11 | −0.1 (2) | C2—N2—C4—N4 | −85.71 (15) |
| O1—C11—C16—C15 | −179.79 (14) | C5—N4—C4—N2 | 65.04 (15) |
| C12—C11—C16—C15 | 0.6 (2) | C7—N4—C4—N2 | −54.30 (15) |
| O2—C21—C22—C23 | −179.63 (13) | C7—N4—C5—N1 | 54.75 (15) |
| C26—C21—C22—C23 | 1.2 (2) | C4—N4—C5—N1 | −64.62 (16) |
| C21—C22—C23—C24 | 0.2 (2) | C1—N1—C5—N4 | 84.81 (15) |
| C22—C23—C24—C25 | −1.5 (2) | C3—N1—C5—N4 | −47.03 (16) |
| C22—C23—C24—Cl2 | 178.15 (12) | C2—N2—C6—N3 | 85.50 (15) |
| C23—C24—C25—C26 | 1.2 (2) | C4—N2—C6—N3 | −47.92 (15) |
| Cl2—C24—C25—C26 | −178.40 (12) | C3—N3—C6—N2 | −64.54 (15) |
| C24—C25—C26—C21 | 0.3 (2) | C7—N3—C6—N2 | 54.51 (15) |
| O2—C21—C26—C25 | 179.42 (14) | C5—N4—C7—N3 | −61.56 (14) |
| C22—C21—C26—C25 | −1.5 (2) | C4—N4—C7—N3 | 60.53 (14) |
| C3—N1—C1—C2 | 64.76 (16) | C3—N3—C7—N4 | 61.15 (14) |
| C5—N1—C1—C2 | −65.11 (16) | C6—N3—C7—N4 | −60.65 (14) |
| C6—N2—C2—C1 | −66.31 (17) |
Hydrogen-bond geometry (Å, º)
Cg8 is the centroid of the C11–C16 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···N1 | 0.88 (3) | 1.91 (3) | 2.7824 (16) | 172 (2) |
| O2—H2···N3 | 0.87 (2) | 1.86 (2) | 2.7186 (16) | 167 (2) |
| C15—H15···N2i | 0.95 | 2.56 | 3.4491 (18) | 156 |
| C2—H2A···Cg8ii | 0.99 | 2.79 | 3.7348 (18) | 160 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y−1/2, z−1/2.
References
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Majerz, I. & Sawka-Dobrowolska, W. (1996). J. Chem. Crystallogr. 26, 147–152.
- Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142–146.
- Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356–1360. [DOI] [PMC free article] [PubMed]
- Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 737–740. [DOI] [PMC free article] [PubMed]
- Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591–595.
- Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015c). Acta Cryst. E71, 463–465. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016546/sj5511Isup2.hkl
CCDC reference: 1510135
Additional supporting information: crystallographic information; 3D view; checkCIF report


