Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Oct 25;72(Pt 11):1651–1653. doi: 10.1107/S2056989016016650

Mechanochemical synthesis and crystal structure of a 1:2 co-crystal of 1,3,6,8-tetra­aza­tri­cyclo[4.3.1.13,8]undecane (TATU) and 4-chloro-3,5-dimethyl­phenol

Augusto Rivera a,*, Jicli José Rojas a, John Sadat-Bernal a, Jaime Ríos-Motta a, Michael Bolte b
PMCID: PMC5095854  PMID: 27840729

In the crystal, the 1:2 co-crystalline adducts are linked by π–π stacking inter­actions.

Keywords: crystal structure, mol­ecular co-crystal, mechanochemical synthesis, π–π stacking

Abstract

Solvent-free treatment of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecano (TATU) with 4-chloro-3,5-di­methyl­phenol led to the formation of the title co-crystal, C7H14N4·2C8H9ClO. The asymmetric unit contains one aminal cage mol­ecule and two phenol mol­ecules linked via two O—H⋯N hydrogen bonds. In the aminal cage, the N–CH2–CH2–N unit is slightly distorted from a syn periplanar geometry. Aromatic π–π stacking between the benzene rings from two different neighbouring phenol mol­ecules [centroid–centroid distance = 4.0570 (11) Å] consolidates the crystal packing.

Chemical context  

Phenols and cyclic aminals are known to form a variety of supra­molecular aggregates via O—H⋯N hydrogen bonds, and complexes of phenols with various nitro­gen bases are model systems often applied in the study of the nature of the hydrogen bond (Majerz et al. 2007). Previously, hydrogen bonding between the hydroxyl group of acidic groups such as phenols and heterocyclic nitro­gen atoms has proved to be a useful and powerful organizing force for the formation of supra­molecules (Jin et al., 2014). In a continuation of our previously published work in this area (Rivera et al., 2007, 2015) and as a part of our research on compounds in which a cyclic aminal acts as a central host and organizes guest mol­ecules around it via hydrogen bonding, we report herein the synthesis and crystal structure of title compound. This was assembled through hydrogen-bonding inter­actions between the cyclic aminal 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) and 4-chloro-3,5-di­methyl­phenol.graphic file with name e-72-01651-scheme1.jpg

In recent years, we have become inter­ested in this cage aminal, which contains two pairs of non-equivalent nitro­gen atoms. Another intriguing feature of TATU is that, in contrast with the related aminal 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) for example (Riddell & Murray-Rust, 1970), TATU did not react with phenols when the reaction was attempted under standard conditions in various organic solvents. Instead, the reaction only took place when the mixture was at heated in an oil-bath at 393 K for 15 min under solvent-free conditions, affording symmetrical 1,3-bis­(2-hy­droxy­benz­yl)imidazolidines (BISBIAs) in good yields (Hernández, 2007). We also discovered that, under mechanochemical conditions, grinding the reagents in a mortar and pestle, the reaction of TATU with phenols affords phenol–aminal aggregates in excellent yields. Furthermore, no side products form in the reaction mixture. Usually, washing the homogeneous mixture with an appropriate solvent and filtration of the solid gives the pure adduct. In this article, we report the crystal structure of the title compound, an adduct obtained on milling a 1:2 stoichiometric mixture of TATU and 4-chloro-3,5-di­methyl­phenol in an agate mortar. This mechanochemical process provides a convenient and efficient method to produce these adducts, and is also environmentally friendly.

Structural commentary  

The title compound crystallizes in space group P21/n with one aminal cage mol­ecule and two 4-chloro-3,5-di­methyl­phenol mol­ecules in the asymmetric unit (Fig. 1) linked by two hydrogen bonds (Table 1). Nitro­gen atoms with the higher sp 3 character act as acceptors in this case, with Σα(C–N–C) = 328.18 and 327.77° for N3 and N4, respectively, as seen with a previous reported TATU hydro­quinone adduct (Rivera et al., 2007). The geometry of the N–C–C–N group of the adamanzane cage in the title compound is slightly distorted from a syn periplanar geometry, as evidenced by the N1—C1—C2—N2 dihedral angle [2.7 (3)°].

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 (3) 1.96 (3) 2.766 (2) 166 (3)
O2—H2⋯N4 0.89 (3) 1.90 (3) 2.760 (2) 160 (2)

Supra­molecular features  

In addition to the O—H⋯N contacts that form the 1:2 co-crystals, weak offset π–π stacking inter­actions link adjacent O1 and O2 phenol rings with a rather long separation between the centroids [Cg8⋯Cg9i = 4.0570 (11); symmetry code: (i) Inline graphic + x, Inline graphic − y, Inline graphic + z; Cg8 and Cg9 are the centroids of the C11–16 and C21–C26 rings, respectively] and the benzene ring planes are inclined to one another by 0.58 (9)°. These additional contacts link the three-membered co-crystal units into chains approximately parallel to (Inline graphic03), Fig. 2.

Figure 2.

Figure 2

Packing diagram for title compound, viewed along the b axis.

Database survey  

Only three comparable structures were found in the Cambridge Structural Database (Groom et al. 2016), namely 1,3,6,8-tetra-aza­tri­cyclo­(4.3.1.13,8)undecane hydro­quinone (HICTOD; Rivera et al., 2007), 3,6,8-tri­aza-1-azoniatri­cyclo­[4.3.1.13,8]undecane penta­chloro­phenolate monohydrate (OMODEA; Rivera et al., 2011), and 4-nitro­phenol 1,3,6,8-tetra-aza­tri­cyclo­[4.3.1.13,8]undecane (VUXMEI; Rivera et al., 2015).

Synthesis and crystallization  

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecano (TATU) (154 mg, 1 mmol) and 4-chloro-3,5-di­methyl­phenol (313 mg, 2 mmol) was ground using a mortar and pestle at room temperature for 15 min. Completion of the reaction was monitored by TLC. The mixture was recrystallized from n-hexane solution to obtain colourless crystals suitable for X-ray analysis, m.p. = 375–376 K. (yield: 63%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference electron-density map. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99Å) and refined using a riding-model approximation, with U iso(H) set to 1.2U eq of the parent atom. The hydroxyl H atoms were refined freely.

Table 2. Experimental details.

Crystal data
Chemical formula C7H14N4·2C8H9ClO
M r 467.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 14.5170 (8), 7.6178 (4), 22.1756 (11)
β (°) 101.824 (4)
V3) 2400.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.28 × 0.24 × 0.24
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001)
T min, T max 0.609, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23030, 4501, 3584
R int 0.032
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.100, 1.03
No. of reflections 4501
No. of parameters 292
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.30

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and XP in SHELXTL-Plus (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016650/sj5512sup1.cif

e-72-01651-sup1.cif (802.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016650/sj5512Isup2.hkl

e-72-01651-Isup2.hkl (358.6KB, hkl)

CCDC reference: 1510356

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship

supplementary crystallographic information

Crystal data

C7H14N4·2C8H9ClO F(000) = 992
Mr = 467.42 Dx = 1.293 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.5170 (8) Å Cell parameters from 23030 reflections
b = 7.6178 (4) Å θ = 3.3–25.9°
c = 22.1756 (11) Å µ = 0.30 mm1
β = 101.824 (4)° T = 173 K
V = 2400.3 (2) Å3 Block, colourless
Z = 4 0.28 × 0.24 × 0.24 mm

Data collection

STOE IPDS II two-circle diffractometer 3584 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.032
ω scans θmax = 25.7°, θmin = 3.3°
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) h = −17→17
Tmin = 0.609, Tmax = 1.000 k = −9→9
23030 measured reflections l = −26→26
4501 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.6672P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
4501 reflections Δρmax = 0.28 e Å3
292 parameters Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.32321 (11) 1.00388 (19) 0.72849 (7) 0.0303 (3)
N2 0.48631 (12) 0.9345 (2) 0.67795 (8) 0.0386 (4)
N3 0.43541 (11) 0.75773 (19) 0.75911 (7) 0.0287 (3)
N4 0.33805 (11) 0.76332 (19) 0.65546 (7) 0.0291 (3)
C1 0.37625 (16) 1.1541 (3) 0.71281 (10) 0.0417 (5)
H1A 0.3950 1.2268 0.7503 0.050*
H1B 0.3331 1.2259 0.6821 0.050*
C2 0.46513 (17) 1.1172 (3) 0.68706 (11) 0.0488 (5)
H2A 0.4585 1.1784 0.6470 0.059*
H2B 0.5197 1.1697 0.7155 0.059*
C3 0.37388 (13) 0.8935 (2) 0.77837 (8) 0.0305 (4)
H3A 0.3274 0.8343 0.7984 0.037*
H3B 0.4130 0.9700 0.8096 0.037*
C4 0.41772 (15) 0.8403 (3) 0.63247 (9) 0.0373 (5)
H4A 0.4506 0.7448 0.6152 0.045*
H4B 0.3922 0.9219 0.5984 0.045*
C5 0.27736 (14) 0.8983 (2) 0.67616 (8) 0.0310 (4)
H5A 0.2533 0.9778 0.6412 0.037*
H5B 0.2224 0.8387 0.6871 0.037*
C6 0.51400 (14) 0.8331 (3) 0.73454 (9) 0.0368 (4)
H6A 0.5514 0.9097 0.7665 0.044*
H6B 0.5555 0.7361 0.7268 0.044*
C7 0.37716 (14) 0.6537 (2) 0.70954 (8) 0.0307 (4)
H7A 0.3249 0.5985 0.7252 0.037*
H7B 0.4159 0.5588 0.6970 0.037*
Cl1 0.76106 (5) −0.00986 (9) 0.86534 (3) 0.0680 (2)
O1 0.45719 (10) 0.5078 (2) 0.85145 (7) 0.0395 (3)
H1 0.461 (2) 0.582 (4) 0.8252 (13) 0.066 (9)*
C11 0.52937 (13) 0.3920 (2) 0.85398 (8) 0.0299 (4)
C12 0.60769 (14) 0.4285 (3) 0.82904 (8) 0.0340 (4)
H12 0.6118 0.5383 0.8094 0.041*
C13 0.68020 (15) 0.3070 (3) 0.83229 (9) 0.0394 (5)
C14 0.67140 (15) 0.1475 (3) 0.86136 (9) 0.0391 (5)
C15 0.59503 (15) 0.1077 (2) 0.88797 (8) 0.0369 (5)
C16 0.52400 (14) 0.2321 (2) 0.88326 (8) 0.0328 (4)
H16 0.4706 0.2073 0.9004 0.039*
C17 0.76413 (18) 0.3517 (4) 0.80495 (12) 0.0633 (7)
H17A 0.7570 0.4708 0.7879 0.095*
H17B 0.7685 0.2680 0.7721 0.095*
H17C 0.8215 0.3453 0.8371 0.095*
C18 0.58762 (19) −0.0650 (3) 0.92064 (11) 0.0518 (6)
H18A 0.5329 −0.0619 0.9401 0.078*
H18B 0.6448 −0.0835 0.9522 0.078*
H18C 0.5804 −0.1612 0.8907 0.078*
Cl2 0.31094 (4) −0.07547 (7) 0.46192 (3) 0.05106 (17)
O2 0.20265 (11) 0.53522 (18) 0.59453 (7) 0.0378 (3)
H2 0.252 (2) 0.606 (4) 0.6060 (12) 0.057 (7)*
C21 0.23133 (14) 0.3965 (2) 0.56384 (8) 0.0295 (4)
C22 0.17280 (14) 0.2507 (2) 0.55338 (8) 0.0297 (4)
H22 0.1157 0.2507 0.5681 0.036*
C23 0.19606 (13) 0.1043 (2) 0.52177 (8) 0.0298 (4)
C24 0.28058 (15) 0.1093 (2) 0.50121 (8) 0.0343 (4)
C25 0.34103 (15) 0.2525 (3) 0.51093 (10) 0.0406 (5)
C26 0.31481 (15) 0.3973 (3) 0.54264 (9) 0.0365 (4)
H26 0.3547 0.4972 0.5497 0.044*
C27 0.13190 (16) −0.0528 (3) 0.51162 (9) 0.0389 (5)
H27A 0.1059 −0.0664 0.4675 0.058*
H27B 0.0804 −0.0360 0.5336 0.058*
H27C 0.1676 −0.1583 0.5272 0.058*
C28 0.4326 (2) 0.2544 (4) 0.48876 (15) 0.0711 (8)
H28A 0.4759 0.1682 0.5121 0.107*
H28B 0.4608 0.3716 0.4949 0.107*
H28C 0.4207 0.2245 0.4449 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0329 (9) 0.0276 (8) 0.0293 (8) 0.0056 (7) 0.0039 (7) −0.0013 (6)
N2 0.0354 (9) 0.0409 (9) 0.0402 (9) −0.0042 (8) 0.0095 (8) 0.0104 (7)
N3 0.0250 (8) 0.0308 (8) 0.0310 (8) 0.0028 (6) 0.0070 (6) 0.0059 (6)
N4 0.0319 (9) 0.0288 (8) 0.0276 (7) −0.0004 (7) 0.0082 (7) −0.0025 (6)
C1 0.0506 (13) 0.0288 (10) 0.0423 (11) −0.0006 (9) 0.0015 (10) 0.0027 (8)
C2 0.0509 (14) 0.0415 (12) 0.0519 (13) −0.0107 (10) 0.0053 (11) 0.0087 (10)
C3 0.0334 (10) 0.0332 (9) 0.0246 (8) 0.0036 (8) 0.0053 (8) −0.0007 (7)
C4 0.0407 (12) 0.0431 (11) 0.0309 (10) 0.0008 (9) 0.0138 (9) 0.0035 (8)
C5 0.0296 (10) 0.0330 (9) 0.0285 (9) 0.0039 (8) 0.0014 (7) −0.0018 (8)
C6 0.0267 (10) 0.0452 (11) 0.0386 (10) −0.0007 (9) 0.0068 (8) 0.0098 (9)
C7 0.0340 (10) 0.0249 (8) 0.0354 (10) 0.0029 (8) 0.0118 (8) 0.0021 (7)
Cl1 0.0767 (5) 0.0679 (4) 0.0573 (4) 0.0424 (4) 0.0085 (3) −0.0006 (3)
O1 0.0345 (8) 0.0433 (8) 0.0426 (8) 0.0090 (6) 0.0122 (6) 0.0165 (7)
C11 0.0282 (10) 0.0333 (9) 0.0262 (8) 0.0007 (8) 0.0011 (7) 0.0004 (7)
C12 0.0347 (11) 0.0367 (10) 0.0299 (9) 0.0003 (8) 0.0049 (8) 0.0060 (8)
C13 0.0359 (11) 0.0503 (12) 0.0315 (10) 0.0066 (9) 0.0056 (9) 0.0006 (9)
C14 0.0438 (12) 0.0394 (11) 0.0306 (10) 0.0132 (9) −0.0010 (9) −0.0045 (8)
C15 0.0481 (12) 0.0283 (10) 0.0275 (9) −0.0005 (9) −0.0080 (9) −0.0018 (7)
C16 0.0339 (11) 0.0343 (10) 0.0278 (9) −0.0065 (8) 0.0004 (8) 0.0022 (8)
C17 0.0464 (15) 0.0883 (19) 0.0611 (15) 0.0167 (14) 0.0248 (13) 0.0160 (14)
C18 0.0695 (17) 0.0326 (11) 0.0457 (12) −0.0027 (11) −0.0063 (11) 0.0054 (9)
Cl2 0.0568 (4) 0.0446 (3) 0.0520 (3) 0.0121 (3) 0.0117 (3) −0.0150 (2)
O2 0.0397 (8) 0.0314 (7) 0.0422 (8) −0.0010 (6) 0.0079 (6) −0.0103 (6)
C21 0.0357 (10) 0.0258 (9) 0.0254 (8) 0.0051 (8) 0.0021 (8) 0.0006 (7)
C22 0.0297 (10) 0.0326 (9) 0.0258 (9) 0.0019 (8) 0.0033 (7) 0.0006 (7)
C23 0.0343 (10) 0.0297 (9) 0.0225 (8) 0.0027 (8) −0.0009 (7) 0.0019 (7)
C24 0.0402 (11) 0.0313 (10) 0.0303 (9) 0.0075 (8) 0.0048 (8) −0.0029 (8)
C25 0.0386 (12) 0.0407 (11) 0.0447 (11) 0.0030 (9) 0.0139 (9) −0.0002 (9)
C26 0.0362 (11) 0.0319 (10) 0.0418 (11) −0.0041 (8) 0.0091 (9) −0.0004 (8)
C27 0.0461 (12) 0.0317 (10) 0.0360 (10) −0.0050 (9) 0.0017 (9) −0.0023 (8)
C28 0.0551 (17) 0.0679 (17) 0.102 (2) −0.0075 (14) 0.0432 (16) −0.0208 (16)

Geometric parameters (Å, º)

N1—C5 1.456 (2) C12—H12 0.9500
N1—C1 1.460 (3) C13—C14 1.393 (3)
N1—C3 1.462 (2) C13—C17 1.507 (3)
N2—C2 1.448 (3) C14—C15 1.392 (3)
N2—C4 1.453 (3) C15—C16 1.388 (3)
N2—C6 1.458 (2) C15—C18 1.516 (3)
N3—C7 1.473 (2) C16—H16 0.9500
N3—C6 1.477 (2) C17—H17A 0.9800
N3—C3 1.485 (2) C17—H17B 0.9800
N4—C7 1.476 (2) C17—H17C 0.9800
N4—C4 1.478 (2) C18—H18A 0.9800
N4—C5 1.487 (2) C18—H18B 0.9800
C1—C2 1.540 (3) C18—H18C 0.9800
C1—H1A 0.9900 Cl2—C24 1.7585 (19)
C1—H1B 0.9900 O2—C21 1.367 (2)
C2—H2A 0.9900 O2—H2 0.89 (3)
C2—H2B 0.9900 C21—C26 1.387 (3)
C3—H3A 0.9900 C21—C22 1.389 (3)
C3—H3B 0.9900 C22—C23 1.395 (3)
C4—H4A 0.9900 C22—H22 0.9500
C4—H4B 0.9900 C23—C24 1.394 (3)
C5—H5A 0.9900 C23—C27 1.505 (3)
C5—H5B 0.9900 C24—C25 1.389 (3)
C6—H6A 0.9900 C25—C26 1.402 (3)
C6—H6B 0.9900 C25—C28 1.509 (3)
C7—H7A 0.9900 C26—H26 0.9500
C7—H7B 0.9900 C27—H27A 0.9800
Cl1—C14 1.759 (2) C27—H27B 0.9800
O1—C11 1.362 (2) C27—H27C 0.9800
O1—H1 0.82 (3) C28—H28A 0.9800
C11—C16 1.390 (3) C28—H28B 0.9800
C11—C12 1.390 (3) C28—H28C 0.9800
C12—C13 1.392 (3)
C5—N1—C1 114.85 (15) C11—C12—C13 121.18 (18)
C5—N1—C3 111.23 (14) C11—C12—H12 119.4
C1—N1—C3 115.00 (16) C13—C12—H12 119.4
C2—N2—C4 115.88 (18) C12—C13—C14 117.61 (18)
C2—N2—C6 114.72 (17) C12—C13—C17 119.6 (2)
C4—N2—C6 111.36 (16) C14—C13—C17 122.8 (2)
C7—N3—C6 107.59 (14) C15—C14—C13 122.87 (18)
C7—N3—C3 107.58 (14) C15—C14—Cl1 118.40 (16)
C6—N3—C3 113.01 (15) C13—C14—Cl1 118.73 (16)
C7—N4—C4 107.88 (15) C16—C15—C14 117.60 (18)
C7—N4—C5 107.10 (13) C16—C15—C18 120.2 (2)
C4—N4—C5 112.79 (15) C14—C15—C18 122.2 (2)
N1—C1—C2 117.90 (16) C15—C16—C11 121.41 (18)
N1—C1—H1A 107.8 C15—C16—H16 119.3
C2—C1—H1A 107.8 C11—C16—H16 119.3
N1—C1—H1B 107.8 C13—C17—H17A 109.5
C2—C1—H1B 107.8 C13—C17—H17B 109.5
H1A—C1—H1B 107.2 H17A—C17—H17B 109.5
N2—C2—C1 116.43 (17) C13—C17—H17C 109.5
N2—C2—H2A 108.2 H17A—C17—H17C 109.5
C1—C2—H2A 108.2 H17B—C17—H17C 109.5
N2—C2—H2B 108.2 C15—C18—H18A 109.5
C1—C2—H2B 108.2 C15—C18—H18B 109.5
H2A—C2—H2B 107.3 H18A—C18—H18B 109.5
N1—C3—N3 114.96 (14) C15—C18—H18C 109.5
N1—C3—H3A 108.5 H18A—C18—H18C 109.5
N3—C3—H3A 108.5 H18B—C18—H18C 109.5
N1—C3—H3B 108.5 C21—O2—H2 107.7 (17)
N3—C3—H3B 108.5 O2—C21—C26 122.80 (17)
H3A—C3—H3B 107.5 O2—C21—C22 117.58 (17)
N2—C4—N4 115.46 (15) C26—C21—C22 119.62 (16)
N2—C4—H4A 108.4 C21—C22—C23 121.36 (17)
N4—C4—H4A 108.4 C21—C22—H22 119.3
N2—C4—H4B 108.4 C23—C22—H22 119.3
N4—C4—H4B 108.4 C24—C23—C22 117.53 (17)
H4A—C4—H4B 107.5 C24—C23—C27 122.14 (17)
N1—C5—N4 115.16 (15) C22—C23—C27 120.33 (17)
N1—C5—H5A 108.5 C25—C24—C23 122.76 (17)
N4—C5—H5A 108.5 C25—C24—Cl2 119.41 (15)
N1—C5—H5B 108.5 C23—C24—Cl2 117.82 (15)
N4—C5—H5B 108.5 C24—C25—C26 117.89 (18)
H5A—C5—H5B 107.5 C24—C25—C28 121.85 (19)
N2—C6—N3 115.20 (16) C26—C25—C28 120.3 (2)
N2—C6—H6A 108.5 C21—C26—C25 120.83 (18)
N3—C6—H6A 108.5 C21—C26—H26 119.6
N2—C6—H6B 108.5 C25—C26—H26 119.6
N3—C6—H6B 108.5 C23—C27—H27A 109.5
H6A—C6—H6B 107.5 C23—C27—H27B 109.5
N3—C7—N4 111.60 (14) H27A—C27—H27B 109.5
N3—C7—H7A 109.3 C23—C27—H27C 109.5
N4—C7—H7A 109.3 H27A—C27—H27C 109.5
N3—C7—H7B 109.3 H27B—C27—H27C 109.5
N4—C7—H7B 109.3 C25—C28—H28A 109.5
H7A—C7—H7B 108.0 C25—C28—H28B 109.5
C11—O1—H1 109 (2) H28A—C28—H28B 109.5
O1—C11—C16 118.06 (17) C25—C28—H28C 109.5
O1—C11—C12 122.63 (17) H28A—C28—H28C 109.5
C16—C11—C12 119.31 (18) H28B—C28—H28C 109.5
C5—N1—C1—C2 −67.1 (2) C12—C13—C14—C15 −1.4 (3)
C3—N1—C1—C2 63.9 (2) C17—C13—C14—C15 178.4 (2)
C4—N2—C2—C1 64.0 (2) C12—C13—C14—Cl1 179.18 (15)
C6—N2—C2—C1 −68.0 (3) C17—C13—C14—Cl1 −1.0 (3)
N1—C1—C2—N2 2.7 (3) C13—C14—C15—C16 1.9 (3)
C5—N1—C3—N3 48.2 (2) Cl1—C14—C15—C16 −178.69 (14)
C1—N1—C3—N3 −84.51 (19) C13—C14—C15—C18 −178.64 (19)
C7—N3—C3—N1 −54.22 (19) Cl1—C14—C15—C18 0.7 (3)
C6—N3—C3—N1 64.4 (2) C14—C15—C16—C11 −1.1 (3)
C2—N2—C4—N4 −85.9 (2) C18—C15—C16—C11 179.49 (18)
C6—N2—C4—N4 47.6 (2) O1—C11—C16—C15 −179.65 (17)
C7—N4—C4—N2 −53.5 (2) C12—C11—C16—C15 −0.2 (3)
C5—N4—C4—N2 64.6 (2) O2—C21—C22—C23 179.19 (16)
C1—N1—C5—N4 84.1 (2) C26—C21—C22—C23 −0.1 (3)
C3—N1—C5—N4 −48.8 (2) C21—C22—C23—C24 0.2 (3)
C7—N4—C5—N1 54.95 (19) C21—C22—C23—C27 179.35 (17)
C4—N4—C5—N1 −63.6 (2) C22—C23—C24—C25 −0.1 (3)
C2—N2—C6—N3 85.9 (2) C27—C23—C24—C25 −179.16 (19)
C4—N2—C6—N3 −48.2 (2) C22—C23—C24—Cl2 179.44 (13)
C7—N3—C6—N2 54.5 (2) C27—C23—C24—Cl2 0.4 (2)
C3—N3—C6—N2 −64.1 (2) C23—C24—C25—C26 −0.2 (3)
C6—N3—C7—N4 −60.74 (18) Cl2—C24—C25—C26 −179.73 (15)
C3—N3—C7—N4 61.31 (17) C23—C24—C25—C28 179.4 (2)
C4—N4—C7—N3 60.23 (18) Cl2—C24—C25—C28 −0.1 (3)
C5—N4—C7—N3 −61.44 (18) O2—C21—C26—C25 −179.47 (18)
O1—C11—C12—C13 −179.85 (18) C22—C21—C26—C25 −0.2 (3)
C16—C11—C12—C13 0.7 (3) C24—C25—C26—C21 0.4 (3)
C11—C12—C13—C14 0.1 (3) C28—C25—C26—C21 −179.3 (2)
C11—C12—C13—C17 −179.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N3 0.82 (3) 1.96 (3) 2.766 (2) 166 (3)
O2—H2···N4 0.89 (3) 1.90 (3) 2.760 (2) 160 (2)

References

  1. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  2. Hernández, M. C. (2007). M. Sc. Thesis, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D. C., Colombia.
  3. Jin, S., Liu, H., Gao, X. J., Lin, Z., Chen, G. & Wang, D. (2014). J. Mol. Struct. 1075, 124–138.
  4. Majerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106–113.
  5. Riddell, F. G. & Murray-Rust, P. (1970). J. Chem. Soc. D, Chem. Commun. pp. 1074–1075.
  6. Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142–146.
  7. Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1356–1360. [DOI] [PMC free article] [PubMed]
  8. Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591–595.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016016650/sj5512sup1.cif

e-72-01651-sup1.cif (802.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016016650/sj5512Isup2.hkl

e-72-01651-Isup2.hkl (358.6KB, hkl)

CCDC reference: 1510356

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES