Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Oct 28;72(Pt 11):1659–1662. doi: 10.1107/S2056989016016042

Crystal structure determination as part of an undergraduate laboratory experiment: 1′,3′,3′-tri­methyl­spiro­[chromene-2,2′-indoline] and 1′,3′,3′-trimethyl-4-[(E)-(1,3,3-tri­methyl­indolin-2-yl­idene)meth­yl]spiro­[chroman-2,2′-indoline]

Joseph O S Beckett a, Marilyn M Olmstead a, James C Fettinger a, David A Gray a, Shuhei Manabe a, Mark Mascal a,*
PMCID: PMC5095856  PMID: 27840731

The crystal structures of the title compounds were determined as part of an experiment in an undergraduate teaching laboratory that demonstrates the relationship between mol­ecular structure and function. 1′,3′,3′-Tri­methyl­spiro­[chromene-2,2′-indoline] is both a photoswitch and thermochromic mol­ecule. Students synthesized it and a bis-indoline adduct and compared the crystallographically determined structures to computed gas-phase models.

Keywords: crystal structure, spiro­pyran, undergraduate teaching laboratory

Abstract

The crystal structures of the title compounds, C19H19NO and C31H34N2O, were determined as part of an experiment in an undergraduate teaching laboratory that demonstrates the relationship between mol­ecular structure and function. 1′,3′,3′-Tri­methyl­spiro­[chromene-2,2′-indoline] is both a photoswitch and thermochromic mol­ecule. Students synthesized it and a bis-indoline adduct and compared the crystallographically determined structures to computed gas-phase models.

Chemical context  

In an ever evolving pursuit to improve the educational experience in undergraduate organic chemistry laboratory courses, we introduced an experiment in which students prepare a ‘functional mol­ecule,’ in this case spiro­pyran 1. Compounds such as 1 are broadly characterized as ‘responsive,’ due to their ability to be actuated by a range of stimuli, including light, heat, metal ions, pH, mechanical force, and changes in solvent polarity (Klajn, 2014). An advantage of the spiro­pyran system over other photochromic/thermochromic materials is the strongly differentiated electronic forms between which equilibrium is shifted. The closed-ring isomer of 1 comprises an indoline and a chromene ring bound together at a spiro junction, while the open-ring form is a zwitterionic merocyanine 1 a (Scheme 1).graphic file with name e-72-01659-scheme1.jpg

Although a variety of substituted spiro­pyran derivatives are known in the literature, for simplicity, we elected to focus on the unsubstituted parent compound, which is colorless in its closed form and red in its open form. The mol­ecule was synthesized in a single step by condensation of 1,3,3-trimethyl-2-methyl­eneindoline with salicyl­aldehyde (Koelsch & Workman, 1952). The methyl­eneindoline nucleophile can also react a second time with 1 to give the bis adduct 2 as a side product (Scheme 2).

Since this experiment was oriented around the functional attributes of 1, it presented an ideal opportunity to introduce structural characterization methods into the laboratory course, since the function of 1 is directly linked to its structure. Students first model the two forms of 1 using both mol­ecular mechanics and semi-empirical quantum mechanical methods. These calculations indicate that the spiro­pyran form of 1 is more stable than the open form 1 a. They then grow crystals of 1 by slow evaporation from acetone, resulting in most cases in large (up to 10 mm × 10 mm), thin pink plates. Although the students do not themselves determine the X-ray crystal structure, crystallographic characterization of 1 has allowed students to compare gas-phase models with condensed-state empirical data.graphic file with name e-72-01659-scheme2.jpg2

Structural commentary  

Crystals of the parent spiro­pyran, 1′,3′,3′-tri­methyl­spiro[chro­mene-2,2′-indoline] 1, are colorless at low temperature (90 K). Fig. 1 depicts the low-temperature crystal structure. There is one mol­ecule in the asymmetric unit. The central sp 3 carbon atom, C1, has a tetra­hedral geometry. The dihedral angle between O1/C1/C12 and N1/C1/C8 is 89.33 (12)°. The C12—C13 bond is a double bond with a length of 1.330 (3) Å. The substituted spiro­pyran, 1′,3′,3′-trimethyl-4-[(E)-(1,3,3-trimethyl­indolin-2-yl­idene)meth­yl]spiro­[chroman-2,2′-indoline] 2, is also colorless at low temperature. It differs from 1 by virtue of substitution at C13 with a methyl­eneindoline group (Fig. 2). Consequently, C12 and C13 are now singly bonded, with a distance of 1.5367 (14) Å. The central carbon atom remains tetra­hedral with the value of the dihedral angle at 89.69 (5), comparable to 1. The atoms C1 and C13 have the same chirality, either RR or SS.

Figure 1.

Figure 1

The mol­ecular structure of 1. Displacement parameters are shown at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of 2. Displacement parameters are shown at the 50% probability level.

Differences between mol­ecular mechanics force field MM2 calculations and the semi-empirical quantum mechanical methods PM6 and PDDG versus experimental X-ray values for selected bond lengths and angles can be seen in Table 1. A clear trend in the data is reflected in the fact that thermal motion in low-temperature X-ray diffraction experiments tends to lead to an apparent bond shortening. Considering only those distances not involving phenyl carbon atoms, the data indicate that MM2 shows the poorest mean agreement with X-ray in bond lengths (±0.043 Å), while PDDG (±0.021 Å) and PM6 (±0.017 Å) perform better. The most serious modeling failure was in the MM2 N1—C2 bond which, at 1.270 Å, was inter­preted by mol­ecular mechanics to be a double bond, but which was clearly a single bond in the X-ray structure at 1.405 (2) Å. As a consequence, the sum of the angles at N1 was 360° in the MM2 calculation, whereas the experimental value was 348.36°. PM6 and PDDG again performed better here, with sums of 345.4 and 344.5°, respectively. The dihedral angle between the O1/C1/C2 plane and the N1/C1/C8 plane was 89.3° for X-ray, compared to 92.7° for MM2, 91.3° for PM6 and 91.4° for PDDG. Bond angle deviations ranged from 0 to 5° and averaged ca 2° for all three methods. Inter­estingly, if the two angles in poor agreement around C1 are discarded, MM2 actually performs somewhat better than the semi-empirical models for angle data. If all data in Table 1 are taken into account, PM6 is seen to outperform both PDDG and MM2.

Table 1. Comparison of modeled (MM2, PDDG, PM6) bond lengths, angles, and dihedral angles (Å, °) with X-ray crystallographic data.

  X-ray MM2 Δ PDDG Δ PM6 Δ
C1—O1 1.471 1.415 0.056 1.423 0.048 1.484 −0.013
C1—N1 1.447 1.488 −0.041 1.515 −0.068 1.493 −0.046
C1—C8 1.580 1.588 −0.008 1.589 −0.009 1.599 −0.019
C1—C12 1.496 1.508 −0.012 1.504 −0.008 1.497 −0.001
N1—C2 1.405 1.270 0.135 1.428 −0.023 1.430 −0.025
N1—C9 1.457 1.475 −0.018 1.468 −0.011 1.481 −0.024
C12—C13 1.330 1.338 −0.008 1.340 −0.010 1.340 −0.010
C13—C14 1.453 1.343 0.110 1.448 0.005 1.455 −0.002
O1—C19 1.370 1.368 0.002 1.366 0.004 1.362 0.008
               
|mean|     0.043   0.021   0.017
               
Dihedral angle O1/C1/C12 and N1/C1/C8 89.33 92.7 −3.370 91.4 −2.070 91.3 −1.970
Sum of angles at N1 348.36 360.0 −11.640 345.4 2.960 344.5 3.860
               
C1—O1—C19 121.03 119.1 1.93 118.4 2.63 121.3 −0.27
O1—C1—C12 111.35 111.3 0.05 115.4 −4.05 113.7 −2.35
O1—C1—C8 108.57 109.1 −0.53 110.2 −1.63 104.8 3.77
N1—C1—C8 102.85 104.3 −1.45 104.9 −2.05 105.3 −2.45
N1—C1—O1 105.75 110.3 −4.55 103.9 1.85 104.5 1.25
N1—C1—C12 112.92 107.6 5.32 109.1 3.82 111.0 1.92
C8—C1—C12 114.70 114.0 0.70 112.3 2.40 116.6 −1.90
               
|mean|     2.08   2.63   1.99

Supra­molecular features  

The KPI of 1 is 68.7% and that of 2 is 69.6% (van der Sluis & Spek, 1990). Neither structure has significant directional inter­molecular inter­actions.

Database survey  

There are 67 structures in the CSD (Groom et al., 2016) with the basic skeleton of compound 1. All of these are substituted in one way or another. There are no unusual differences among these structures. Since the C1—O1 bond is broken in the transformation to the merocyanine form, it is of inter­est to examine this bond length. Of the 82 hits with similar geometry, the mean C—O distance in the CSD is 1.479 (15)°. For 1, this distance is 1.4708 (19) Å. For 2, the same distance is 1.4648 (12) Å. There are five structures in the CSD that involve further methyl­eneindoline substitution, similar to 2. In all cases, the structures are racemic and the chirality is either RR or SS. Two of the deposits (NESZOC and NESZOC01; Ashraf et al., 2012) describe the results from two different crystals, two different radiations (Cu Kα and Mo Kα), and two different temperatures (153 and 113 K), respectively. Structurally, there is no significant difference between them, but the higher temperature crystal is described as a red prism while the lower temperature crystal is a pink plate. This feature was not discussed, but it raises the possibility of a merocyanine impurity arising due to the thermochromic effect.

Synthesis and crystallization  

A solution of 1,3,3-trimethyl-2-methyl­eneindoline (3.37 g, 19.5 mmol) and salicyl­aldehyde (2.53 g, 20.7 mmol) in absolute ethanol (15 mL) was heated at reflux with stirring for 1 h. A white precipitate was filtered from the hot solution and washed with cold absolute ethanol. The solid was recrystallized from acetone to give 1′,3′,3′-trimethyl-4-[(E)-(1,3,3-tri­methyl­indolin-2-yl­idene)meth­yl]spiro­[chroman-2,2′-indoline] 2 (0.49 g, 11%), m.p. 474–477 K. The filtrate/wash was then evaporated and the residue was recrystallized from 90% ethanol to give 1′,3′,3′-tri­methyl­spiro­[chromene-2,2′-indoline] 1 (2.58 g, 48%), m.p. 366-368 K. Crystals of 1 and 2 suitable for X-ray diffraction were obtained by slow evaporation from acetone solutions.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms bonded to carbon were located by geometry and refined using a riding model. Distances were fixed at 0.95 Å for C—H bonds in phenyl rings and 0.98 Å in methyl groups. In structure 2, primary C—H bonds were assigned C—H distances of 1.00 Å while secondary C—H distances were given values of 0.99 Å. The U iso(H) parameters were set equal to 1.5U eq for the methyl groups and to 1.2U eq of the parent carbon for all others.

Table 2. Experimental details.

  1 2
Crystal data
Chemical formula C19H19NO C31H34N2O
M r 277.35 450.60
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 90 90
a, b, c (Å) 11.530 (7), 10.938 (6), 13.013 (7) 14.1774 (11), 11.6019 (9), 16.2847 (17)
β (°) 115.614 (7) 115.6129 (12)
V3) 1479.9 (15) 2415.4 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.52 × 0.36 × 0.35 0.48 × 0.26 × 0.08
 
Data collection
Diffractometer Bruker SMART 1000 Bruker DUO
Absorption correction Multi-scan (SADABS; Bruker, 2014) Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.811, 0.983 0.713, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12543, 3358, 2672 39237, 7680, 6549
R int 0.029 0.026
(sin θ/λ)max−1) 0.650 0.725
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.139, 1.05 0.046, 0.124, 1.03
No. of reflections 3358 7680
No. of parameters 193 313
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.23 0.61, −0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2013, 2014), APEX2 (Bruker, 2014), SHELXTL (Sheldrick, 2008), SHELXT (Sheldrick, 2015a ) and SHELXL2014 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989016016042/hb7609sup1.cif

e-72-01659-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989016016042/hb76091sup4.hkl

e-72-01659-1sup4.hkl (268.2KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989016016042/hb76092sup3.hkl

e-72-01659-2sup3.hkl (610KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016016042/hb76091sup4.cml

Supporting information file. DOI: 10.1107/S2056989016016042/hb76092sup5.cml

CCDC references: 1509185, 1509184

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Science Foundation (Grant 0840444) for the Dual source X-ray diffractometer.

supplementary crystallographic information

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Crystal data

C19H19NO F(000) = 592
Mr = 277.35 Dx = 1.245 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.530 (7) Å Cell parameters from 9931 reflections
b = 10.938 (6) Å θ = 2.6–27.4°
c = 13.013 (7) Å µ = 0.08 mm1
β = 115.614 (7)° T = 90 K
V = 1479.9 (15) Å3 Block, colorless
Z = 4 0.52 × 0.36 × 0.35 mm

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Data collection

Bruker SMART 1000 diffractometer 3358 independent reflections
Radiation source: fine-focus sealed tube 2672 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1 Rint = 0.029
ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −14→14
Tmin = 0.811, Tmax = 0.983 k = −14→14
12543 measured reflections l = −16→16

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0554P)2 + 1.046P] where P = (Fo2 + 2Fc2)/3
3358 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.23 e Å3

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.80339 (11) 0.34663 (10) 0.35758 (9) 0.0279 (3)
N1 0.80594 (13) 0.55031 (13) 0.30705 (12) 0.0296 (3)
C1 0.73425 (15) 0.43762 (14) 0.26886 (13) 0.0271 (3)
C2 0.76732 (15) 0.60633 (14) 0.38435 (14) 0.0284 (3)
C3 0.83102 (17) 0.69436 (16) 0.46624 (15) 0.0362 (4)
H3 0.9137 0.7230 0.4784 0.043*
C4 0.76958 (19) 0.73941 (16) 0.53015 (16) 0.0392 (4)
H4 0.8110 0.8002 0.5863 0.047*
C5 0.64926 (19) 0.69733 (16) 0.51348 (15) 0.0373 (4)
H5 0.6089 0.7298 0.5576 0.045*
C6 0.58729 (16) 0.60716 (15) 0.43184 (14) 0.0310 (4)
H6 0.5050 0.5777 0.4203 0.037*
C7 0.64723 (15) 0.56145 (14) 0.36826 (13) 0.0267 (3)
C8 0.60256 (14) 0.46823 (14) 0.27321 (13) 0.0261 (3)
C9 0.93940 (16) 0.55554 (18) 0.32437 (17) 0.0386 (4)
H9A 0.9487 0.5105 0.2633 0.058*
H9B 0.9948 0.5187 0.3981 0.058*
H9C 0.9645 0.6410 0.3234 0.058*
C10 0.50907 (16) 0.52895 (16) 0.16130 (14) 0.0329 (4)
H10A 0.4821 0.4690 0.0993 0.049*
H10B 0.5521 0.5976 0.1437 0.049*
H10C 0.4335 0.5590 0.1696 0.049*
C11 0.53771 (16) 0.35560 (15) 0.29460 (15) 0.0312 (4)
H11A 0.5220 0.2952 0.2344 0.047*
H11B 0.4557 0.3794 0.2945 0.047*
H11C 0.5938 0.3199 0.3687 0.047*
C12 0.72190 (17) 0.39690 (17) 0.15482 (14) 0.0336 (4)
H12 0.7053 0.4565 0.0970 0.040*
C13 0.73330 (16) 0.28041 (17) 0.13139 (14) 0.0339 (4)
H13 0.7175 0.2579 0.0560 0.041*
C14 0.76943 (15) 0.18690 (15) 0.21904 (14) 0.0290 (3)
C15 0.77489 (16) 0.06223 (16) 0.19799 (16) 0.0343 (4)
H15 0.7521 0.0349 0.1224 0.041*
C16 0.81308 (16) −0.02187 (16) 0.28582 (17) 0.0372 (4)
H16 0.8147 −0.1066 0.2704 0.045*
C17 0.84899 (15) 0.01812 (16) 0.39650 (16) 0.0344 (4)
H17 0.8755 −0.0395 0.4570 0.041*
C18 0.84650 (14) 0.14200 (15) 0.41974 (14) 0.0290 (3)
H18 0.8735 0.1692 0.4960 0.035*
C19 0.80426 (14) 0.22559 (14) 0.33084 (13) 0.0261 (3)

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0296 (6) 0.0243 (5) 0.0275 (6) 0.0041 (4) 0.0103 (5) 0.0002 (4)
N1 0.0238 (7) 0.0291 (7) 0.0385 (8) −0.0025 (5) 0.0159 (6) 0.0002 (6)
C1 0.0259 (7) 0.0271 (8) 0.0285 (8) 0.0003 (6) 0.0119 (6) 0.0029 (6)
C2 0.0269 (8) 0.0243 (7) 0.0331 (8) 0.0008 (6) 0.0122 (7) 0.0031 (6)
C3 0.0346 (9) 0.0276 (8) 0.0402 (9) −0.0035 (7) 0.0104 (7) −0.0001 (7)
C4 0.0511 (11) 0.0254 (8) 0.0361 (9) 0.0006 (7) 0.0142 (8) −0.0005 (7)
C5 0.0509 (11) 0.0284 (8) 0.0362 (9) 0.0089 (8) 0.0223 (8) 0.0036 (7)
C6 0.0318 (8) 0.0278 (8) 0.0360 (8) 0.0057 (6) 0.0172 (7) 0.0065 (7)
C7 0.0266 (7) 0.0234 (7) 0.0292 (8) 0.0028 (6) 0.0112 (6) 0.0043 (6)
C8 0.0230 (7) 0.0271 (8) 0.0279 (8) 0.0000 (6) 0.0106 (6) 0.0037 (6)
C9 0.0254 (8) 0.0435 (10) 0.0490 (10) −0.0023 (7) 0.0180 (8) 0.0036 (8)
C10 0.0282 (8) 0.0340 (9) 0.0333 (9) 0.0012 (7) 0.0102 (7) 0.0059 (7)
C11 0.0280 (8) 0.0295 (8) 0.0363 (9) −0.0024 (6) 0.0143 (7) 0.0036 (7)
C12 0.0338 (9) 0.0399 (9) 0.0291 (8) −0.0008 (7) 0.0154 (7) 0.0027 (7)
C13 0.0315 (8) 0.0438 (10) 0.0287 (8) −0.0027 (7) 0.0151 (7) −0.0041 (7)
C14 0.0218 (7) 0.0350 (9) 0.0317 (8) −0.0017 (6) 0.0130 (6) −0.0055 (7)
C15 0.0244 (8) 0.0383 (9) 0.0405 (9) −0.0031 (7) 0.0144 (7) −0.0123 (7)
C16 0.0259 (8) 0.0298 (9) 0.0528 (11) −0.0002 (7) 0.0143 (8) −0.0079 (8)
C17 0.0226 (8) 0.0298 (8) 0.0474 (10) 0.0014 (6) 0.0118 (7) 0.0021 (7)
C18 0.0204 (7) 0.0317 (8) 0.0330 (8) 0.0017 (6) 0.0096 (6) 0.0007 (7)
C19 0.0196 (7) 0.0268 (8) 0.0330 (8) 0.0007 (6) 0.0125 (6) −0.0037 (6)

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline]. Geometric parameters (Å, º)

O1—C19 1.370 (2) C9—H9C 0.9800
O1—C1 1.4708 (19) C10—H10A 0.9800
N1—C2 1.405 (2) C10—H10B 0.9800
N1—C1 1.447 (2) C10—H10C 0.9800
N1—C9 1.457 (2) C11—H11A 0.9800
C1—C12 1.496 (2) C11—H11B 0.9800
C1—C8 1.580 (2) C11—H11C 0.9800
C2—C3 1.388 (2) C12—C13 1.330 (3)
C2—C7 1.397 (2) C12—H12 0.9500
C3—C4 1.395 (3) C13—C14 1.452 (2)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.387 (3) C14—C19 1.397 (2)
C4—H4 0.9500 C14—C15 1.398 (2)
C5—C6 1.398 (3) C15—C16 1.382 (3)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.381 (2) C16—C17 1.386 (3)
C6—H6 0.9500 C16—H16 0.9500
C7—C8 1.511 (2) C17—C18 1.391 (2)
C8—C11 1.528 (2) C17—H17 0.9500
C8—C10 1.538 (2) C18—C19 1.387 (2)
C9—H9A 0.9800 C18—H18 0.9500
C9—H9B 0.9800
C19—O1—C1 121.03 (12) H9A—C9—H9C 109.5
C2—N1—C1 107.85 (13) H9B—C9—H9C 109.5
C2—N1—C9 120.85 (14) C8—C10—H10A 109.5
C1—N1—C9 119.66 (14) C8—C10—H10B 109.5
N1—C1—O1 105.75 (12) H10A—C10—H10B 109.5
N1—C1—C12 112.92 (14) C8—C10—H10C 109.5
O1—C1—C12 111.35 (13) H10A—C10—H10C 109.5
N1—C1—C8 102.85 (13) H10B—C10—H10C 109.5
O1—C1—C8 108.57 (12) C8—C11—H11A 109.5
C12—C1—C8 114.70 (13) C8—C11—H11B 109.5
C3—C2—C7 121.35 (16) H11A—C11—H11B 109.5
C3—C2—N1 128.78 (16) C8—C11—H11C 109.5
C7—C2—N1 109.87 (14) H11A—C11—H11C 109.5
C2—C3—C4 117.80 (17) H11B—C11—H11C 109.5
C2—C3—H3 121.1 C13—C12—C1 122.43 (16)
C4—C3—H3 121.1 C13—C12—H12 118.8
C5—C4—C3 121.40 (17) C1—C12—H12 118.8
C5—C4—H4 119.3 C12—C13—C14 121.19 (16)
C3—C4—H4 119.3 C12—C13—H13 119.4
C4—C5—C6 120.06 (17) C14—C13—H13 119.4
C4—C5—H5 120.0 C19—C14—C15 118.85 (16)
C6—C5—H5 120.0 C19—C14—C13 117.40 (15)
C7—C6—C5 119.14 (16) C15—C14—C13 123.71 (16)
C7—C6—H6 120.4 C16—C15—C14 120.83 (17)
C5—C6—H6 120.4 C16—C15—H15 119.6
C6—C7—C2 120.22 (16) C14—C15—H15 119.6
C6—C7—C8 130.76 (15) C15—C16—C17 119.62 (17)
C2—C7—C8 108.96 (14) C15—C16—H16 120.2
C7—C8—C11 114.54 (14) C17—C16—H16 120.2
C7—C8—C10 109.56 (13) C16—C17—C18 120.55 (17)
C11—C8—C10 108.83 (13) C16—C17—H17 119.7
C7—C8—C1 100.34 (12) C18—C17—H17 119.7
C11—C8—C1 112.92 (13) C19—C18—C17 119.56 (16)
C10—C8—C1 110.41 (13) C19—C18—H18 120.2
N1—C9—H9A 109.5 C17—C18—H18 120.2
N1—C9—H9B 109.5 O1—C19—C18 117.61 (14)
H9A—C9—H9B 109.5 O1—C19—C14 121.79 (15)
N1—C9—H9C 109.5 C18—C19—C14 120.54 (15)
C2—N1—C1—O1 −82.59 (15) C2—C7—C8—C1 18.11 (16)
C9—N1—C1—O1 60.87 (18) N1—C1—C8—C7 −29.16 (14)
C2—N1—C1—C12 155.41 (14) O1—C1—C8—C7 82.58 (14)
C9—N1—C1—C12 −61.1 (2) C12—C1—C8—C7 −152.16 (14)
C2—N1—C1—C8 31.23 (16) N1—C1—C8—C11 −151.54 (13)
C9—N1—C1—C8 174.69 (14) O1—C1—C8—C11 −39.80 (17)
C19—O1—C1—N1 −148.68 (13) C12—C1—C8—C11 85.46 (17)
C19—O1—C1—C12 −25.67 (19) N1—C1—C8—C10 86.38 (15)
C19—O1—C1—C8 101.54 (15) O1—C1—C8—C10 −161.88 (12)
C1—N1—C2—C3 159.89 (16) C12—C1—C8—C10 −36.62 (19)
C9—N1—C2—C3 16.9 (3) N1—C1—C12—C13 139.09 (17)
C1—N1—C2—C7 −20.76 (18) O1—C1—C12—C13 20.3 (2)
C9—N1—C2—C7 −163.71 (14) C8—C1—C12—C13 −103.50 (19)
C7—C2—C3—C4 −1.8 (2) C1—C12—C13—C14 −5.3 (3)
N1—C2—C3—C4 177.50 (16) C12—C13—C14—C19 −6.3 (2)
C2—C3—C4—C5 0.5 (3) C12—C13—C14—C15 175.75 (16)
C3—C4—C5—C6 0.5 (3) C19—C14—C15—C16 0.5 (2)
C4—C5—C6—C7 −0.3 (2) C13—C14—C15—C16 178.41 (15)
C5—C6—C7—C2 −1.0 (2) C14—C15—C16—C17 −1.3 (2)
C5—C6—C7—C8 −177.85 (15) C15—C16—C17—C18 0.2 (2)
C3—C2—C7—C6 2.1 (2) C16—C17—C18—C19 1.8 (2)
N1—C2—C7—C6 −177.35 (14) C1—O1—C19—C18 −166.22 (13)
C3—C2—C7—C8 179.55 (15) C1—O1—C19—C14 16.5 (2)
N1—C2—C7—C8 0.14 (18) C17—C18—C19—O1 180.00 (14)
C6—C7—C8—C11 −43.5 (2) C17—C18—C19—C14 −2.7 (2)
C2—C7—C8—C11 139.34 (14) C15—C14—C19—O1 178.75 (14)
C6—C7—C8—C10 79.1 (2) C13—C14—C19—O1 0.7 (2)
C2—C7—C8—C10 −98.05 (15) C15—C14—C19—C18 1.5 (2)
C6—C7—C8—C1 −164.75 (16) C13—C14—C19—C18 −176.51 (14)

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Crystal data

C31H34N2O F(000) = 968
Mr = 450.60 Dx = 1.239 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.1774 (11) Å Cell parameters from 9967 reflections
b = 11.6019 (9) Å θ = 2.3–31.0°
c = 16.2847 (17) Å µ = 0.07 mm1
β = 115.6129 (12)° T = 90 K
V = 2415.4 (4) Å3 Plate, colorless
Z = 4 0.48 × 0.26 × 0.08 mm

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Data collection

Bruker DUO diffractometer 7680 independent reflections
Radiation source: fine focus sealed tube 6549 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1 Rint = 0.026
ω scans θmax = 31.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −20→20
Tmin = 0.713, Tmax = 0.746 k = −16→16
39237 measured reflections l = −23→23

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.9489P] where P = (Fo2 + 2Fc2)/3
7680 reflections (Δ/σ)max < 0.001
313 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.22 e Å3

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34762 (5) 0.16535 (6) 0.32478 (5) 0.01634 (15)
N1 0.40423 (7) 0.35186 (7) 0.37594 (6) 0.01547 (16)
N2 −0.08953 (7) 0.35771 (8) −0.01968 (6) 0.01639 (17)
C1 0.31133 (7) 0.27916 (8) 0.33767 (7) 0.01376 (17)
C2 0.45179 (8) 0.33748 (8) 0.47069 (7) 0.01494 (18)
C3 0.55233 (8) 0.36930 (9) 0.53229 (7) 0.01845 (19)
H3 0.5998 0.4030 0.5122 0.022*
C4 0.58087 (9) 0.34990 (10) 0.62471 (7) 0.0212 (2)
H4 0.6489 0.3712 0.6682 0.025*
C5 0.51211 (9) 0.30028 (10) 0.65452 (8) 0.0231 (2)
H5 0.5335 0.2875 0.7177 0.028*
C6 0.41093 (9) 0.26899 (10) 0.59145 (7) 0.0211 (2)
H6 0.3633 0.2355 0.6114 0.025*
C7 0.38174 (8) 0.28778 (9) 0.49969 (7) 0.01572 (18)
C8 0.27724 (7) 0.27236 (8) 0.41788 (7) 0.01457 (17)
C9 0.47220 (8) 0.36495 (10) 0.33042 (7) 0.0195 (2)
H9A 0.5114 0.4372 0.3498 0.029*
H9B 0.4297 0.3664 0.2643 0.029*
H9C 0.5212 0.3001 0.3464 0.029*
C10 0.20944 (8) 0.37710 (10) 0.41676 (8) 0.0203 (2)
H10A 0.2004 0.3784 0.4731 0.031*
H10B 0.1408 0.3711 0.3644 0.031*
H10C 0.2440 0.4482 0.4120 0.031*
C11 0.22236 (8) 0.16035 (10) 0.42081 (7) 0.0203 (2)
H11A 0.2120 0.1582 0.4765 0.030*
H11B 0.2655 0.0946 0.4202 0.030*
H11C 0.1544 0.1563 0.3676 0.030*
C12 0.23105 (8) 0.32528 (9) 0.24650 (7) 0.01534 (18)
H12A 0.2665 0.3408 0.2070 0.018*
H12B 0.2034 0.3994 0.2569 0.018*
C13 0.13889 (7) 0.24303 (8) 0.19642 (7) 0.01457 (17)
H13 0.0967 0.2367 0.2320 0.017*
C14 0.18259 (7) 0.12496 (8) 0.19179 (6) 0.01406 (17)
C15 0.12593 (8) 0.04410 (9) 0.12446 (7) 0.01773 (19)
H15 0.0575 0.0634 0.0805 0.021*
C16 0.16694 (8) −0.06372 (9) 0.12009 (7) 0.0192 (2)
H16 0.1272 −0.1169 0.0736 0.023*
C17 0.26725 (8) −0.09253 (9) 0.18494 (8) 0.0198 (2)
H17 0.2960 −0.1658 0.1827 0.024*
C18 0.32501 (8) −0.01440 (9) 0.25269 (7) 0.01735 (19)
H18 0.3930 −0.0344 0.2969 0.021*
C19 0.28304 (7) 0.09388 (8) 0.25583 (7) 0.01425 (17)
C20 0.06994 (8) 0.28955 (9) 0.10287 (7) 0.01557 (18)
H20 0.1026 0.3022 0.0635 0.019*
C21 −0.03249 (7) 0.31510 (8) 0.06905 (6) 0.01364 (17)
C22 −0.19342 (8) 0.37872 (8) −0.03783 (7) 0.01475 (18)
C23 −0.27463 (8) 0.42123 (9) −0.11683 (7) 0.01866 (19)
H23 −0.2638 0.4406 −0.1688 0.022*
C24 −0.37283 (8) 0.43437 (10) −0.11672 (8) 0.0213 (2)
H24 −0.4295 0.4630 −0.1698 0.026*
C25 −0.38953 (8) 0.40669 (10) −0.04102 (8) 0.0211 (2)
H25 −0.4569 0.4165 −0.0427 0.025*
C26 −0.30669 (8) 0.36425 (9) 0.03782 (7) 0.01789 (19)
H26 −0.3173 0.3453 0.0899 0.021*
C27 −0.20940 (7) 0.35039 (8) 0.03879 (7) 0.01449 (18)
C28 −0.10793 (7) 0.30639 (8) 0.11424 (6) 0.01381 (17)
C29 −0.07525 (8) 0.38417 (10) 0.19859 (7) 0.0196 (2)
H29A −0.0588 0.4614 0.1842 0.029*
H29B −0.0134 0.3515 0.2488 0.029*
H29C −0.1327 0.3891 0.2166 0.029*
C30 −0.12197 (9) 0.18061 (9) 0.13746 (8) 0.0211 (2)
H30A −0.1753 0.1774 0.1606 0.032*
H30B −0.0555 0.1515 0.1840 0.032*
H30C −0.1441 0.1331 0.0825 0.032*
C31 −0.04513 (9) 0.37235 (10) −0.08373 (7) 0.0209 (2)
H31A −0.0985 0.4030 −0.1411 0.031*
H31B −0.0205 0.2977 −0.0950 0.031*
H31C 0.0138 0.4263 −0.0586 0.031*

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0140 (3) 0.0146 (3) 0.0178 (3) 0.0019 (2) 0.0043 (3) −0.0028 (3)
N1 0.0150 (4) 0.0173 (4) 0.0146 (4) −0.0025 (3) 0.0069 (3) −0.0006 (3)
N2 0.0156 (4) 0.0212 (4) 0.0129 (4) 0.0024 (3) 0.0068 (3) 0.0041 (3)
C1 0.0142 (4) 0.0130 (4) 0.0143 (4) 0.0015 (3) 0.0064 (3) 0.0002 (3)
C2 0.0160 (4) 0.0139 (4) 0.0147 (4) 0.0016 (3) 0.0065 (3) −0.0006 (3)
C3 0.0164 (4) 0.0180 (4) 0.0202 (5) −0.0006 (3) 0.0072 (4) −0.0026 (4)
C4 0.0187 (5) 0.0217 (5) 0.0187 (5) 0.0013 (4) 0.0041 (4) −0.0034 (4)
C5 0.0246 (5) 0.0263 (5) 0.0149 (4) 0.0016 (4) 0.0054 (4) 0.0008 (4)
C6 0.0226 (5) 0.0247 (5) 0.0168 (5) 0.0005 (4) 0.0091 (4) 0.0026 (4)
C7 0.0161 (4) 0.0156 (4) 0.0154 (4) 0.0023 (3) 0.0067 (3) 0.0013 (3)
C8 0.0149 (4) 0.0159 (4) 0.0141 (4) 0.0011 (3) 0.0074 (3) 0.0014 (3)
C9 0.0186 (4) 0.0232 (5) 0.0200 (5) −0.0021 (4) 0.0115 (4) 0.0004 (4)
C10 0.0187 (4) 0.0227 (5) 0.0201 (5) 0.0041 (4) 0.0088 (4) −0.0019 (4)
C11 0.0212 (5) 0.0220 (5) 0.0191 (5) −0.0041 (4) 0.0100 (4) 0.0017 (4)
C12 0.0160 (4) 0.0150 (4) 0.0140 (4) 0.0010 (3) 0.0055 (3) 0.0010 (3)
C13 0.0142 (4) 0.0156 (4) 0.0139 (4) 0.0021 (3) 0.0061 (3) 0.0014 (3)
C14 0.0140 (4) 0.0154 (4) 0.0135 (4) 0.0009 (3) 0.0066 (3) 0.0005 (3)
C15 0.0174 (4) 0.0191 (5) 0.0153 (4) −0.0009 (3) 0.0057 (3) 0.0000 (3)
C16 0.0231 (5) 0.0174 (4) 0.0172 (4) −0.0030 (4) 0.0088 (4) −0.0038 (4)
C17 0.0218 (5) 0.0169 (4) 0.0230 (5) 0.0008 (4) 0.0118 (4) −0.0025 (4)
C18 0.0155 (4) 0.0172 (4) 0.0204 (5) 0.0021 (3) 0.0087 (4) −0.0004 (4)
C19 0.0136 (4) 0.0150 (4) 0.0153 (4) 0.0001 (3) 0.0074 (3) −0.0006 (3)
C20 0.0157 (4) 0.0181 (4) 0.0136 (4) 0.0018 (3) 0.0069 (3) 0.0017 (3)
C21 0.0164 (4) 0.0132 (4) 0.0117 (4) 0.0002 (3) 0.0064 (3) 0.0005 (3)
C22 0.0154 (4) 0.0132 (4) 0.0141 (4) −0.0007 (3) 0.0050 (3) −0.0006 (3)
C23 0.0199 (5) 0.0180 (5) 0.0144 (4) 0.0000 (4) 0.0039 (4) 0.0014 (3)
C24 0.0173 (4) 0.0200 (5) 0.0200 (5) 0.0008 (4) 0.0018 (4) 0.0007 (4)
C25 0.0140 (4) 0.0212 (5) 0.0241 (5) −0.0007 (4) 0.0046 (4) −0.0007 (4)
C26 0.0152 (4) 0.0188 (5) 0.0190 (5) −0.0024 (3) 0.0067 (4) −0.0009 (4)
C27 0.0141 (4) 0.0133 (4) 0.0148 (4) −0.0013 (3) 0.0051 (3) −0.0004 (3)
C28 0.0144 (4) 0.0148 (4) 0.0130 (4) 0.0005 (3) 0.0066 (3) 0.0013 (3)
C29 0.0169 (4) 0.0265 (5) 0.0143 (4) 0.0026 (4) 0.0057 (4) −0.0025 (4)
C30 0.0210 (5) 0.0184 (5) 0.0255 (5) 0.0000 (4) 0.0116 (4) 0.0067 (4)
C31 0.0222 (5) 0.0276 (5) 0.0158 (4) 0.0015 (4) 0.0111 (4) 0.0042 (4)

(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] . Geometric parameters (Å, º)

O1—C19 1.3776 (12) C13—H13 1.0000
O1—C1 1.4648 (12) C14—C19 1.4005 (13)
N1—C2 1.4013 (13) C14—C15 1.4022 (14)
N1—C9 1.4556 (13) C15—C16 1.3942 (15)
N1—C1 1.4577 (13) C15—H15 0.9500
N2—C22 1.3928 (13) C16—C17 1.3967 (15)
N2—C21 1.4056 (12) C16—H16 0.9500
N2—C31 1.4425 (13) C17—C18 1.3887 (15)
C1—C12 1.5247 (13) C17—H17 0.9500
C1—C8 1.5785 (14) C18—C19 1.4004 (14)
C2—C3 1.3921 (14) C18—H18 0.9500
C2—C7 1.3956 (14) C20—C21 1.3448 (13)
C3—C4 1.3975 (15) C20—H20 0.9500
C3—H3 0.9500 C21—C28 1.5415 (13)
C4—C5 1.3881 (17) C22—C23 1.3941 (13)
C4—H4 0.9500 C22—C27 1.4002 (14)
C5—C6 1.4037 (16) C23—C24 1.4013 (15)
C5—H5 0.9500 C23—H23 0.9500
C6—C7 1.3845 (14) C24—C25 1.3896 (16)
C6—H6 0.9500 C24—H24 0.9500
C7—C8 1.5150 (14) C25—C26 1.4023 (14)
C8—C11 1.5260 (14) C25—H25 0.9500
C8—C10 1.5446 (14) C26—C27 1.3820 (14)
C9—H9A 0.9800 C26—H26 0.9500
C9—H9B 0.9800 C27—C28 1.5204 (13)
C9—H9C 0.9800 C28—C29 1.5381 (14)
C10—H10A 0.9800 C28—C30 1.5418 (14)
C10—H10B 0.9800 C29—H29A 0.9800
C10—H10C 0.9800 C29—H29B 0.9800
C11—H11A 0.9800 C29—H29C 0.9800
C11—H11B 0.9800 C30—H30A 0.9800
C11—H11C 0.9800 C30—H30B 0.9800
C12—C13 1.5367 (14) C30—H30C 0.9800
C12—H12A 0.9900 C31—H31A 0.9800
C12—H12B 0.9900 C31—H31B 0.9800
C13—C20 1.5100 (13) C31—H31C 0.9800
C13—C14 1.5186 (14)
C19—O1—C1 120.56 (7) C19—C14—C15 117.67 (9)
C2—N1—C9 117.63 (8) C19—C14—C13 120.04 (8)
C2—N1—C1 108.51 (8) C15—C14—C13 122.29 (9)
C9—N1—C1 121.16 (8) C16—C15—C14 121.98 (9)
C22—N2—C21 111.43 (8) C16—C15—H15 119.0
C22—N2—C31 125.31 (8) C14—C15—H15 119.0
C21—N2—C31 123.21 (8) C15—C16—C17 119.14 (9)
N1—C1—O1 105.93 (7) C15—C16—H16 120.4
N1—C1—C12 111.68 (8) C17—C16—H16 120.4
O1—C1—C12 109.72 (8) C18—C17—C16 120.16 (10)
N1—C1—C8 102.62 (8) C18—C17—H17 119.9
O1—C1—C8 109.01 (7) C16—C17—H17 119.9
C12—C1—C8 117.17 (8) C17—C18—C19 120.04 (9)
C3—C2—C7 121.49 (9) C17—C18—H18 120.0
C3—C2—N1 128.12 (9) C19—C18—H18 120.0
C7—C2—N1 110.35 (8) O1—C19—C18 115.25 (8)
C2—C3—C4 117.58 (10) O1—C19—C14 123.75 (9)
C2—C3—H3 121.2 C18—C19—C14 121.00 (9)
C4—C3—H3 121.2 C21—C20—C13 127.27 (9)
C5—C4—C3 121.55 (10) C21—C20—H20 116.4
C5—C4—H4 119.2 C13—C20—H20 116.4
C3—C4—H4 119.2 C20—C21—N2 122.55 (9)
C4—C5—C6 120.10 (10) C20—C21—C28 129.73 (9)
C4—C5—H5 120.0 N2—C21—C28 107.71 (8)
C6—C5—H5 120.0 N2—C22—C23 129.31 (9)
C7—C6—C5 118.89 (10) N2—C22—C27 109.48 (8)
C7—C6—H6 120.6 C23—C22—C27 121.21 (9)
C5—C6—H6 120.6 C22—C23—C24 117.51 (10)
C6—C7—C2 120.39 (9) C22—C23—H23 121.2
C6—C7—C8 130.77 (9) C24—C23—H23 121.2
C2—C7—C8 108.64 (8) C25—C24—C23 121.77 (10)
C7—C8—C11 113.02 (8) C25—C24—H24 119.1
C7—C8—C10 106.52 (8) C23—C24—H24 119.1
C11—C8—C10 110.32 (8) C24—C25—C26 119.79 (10)
C7—C8—C1 100.90 (8) C24—C25—H25 120.1
C11—C8—C1 114.27 (8) C26—C25—H25 120.1
C10—C8—C1 111.26 (8) C27—C26—C25 119.21 (10)
N1—C9—H9A 109.5 C27—C26—H26 120.4
N1—C9—H9B 109.5 C25—C26—H26 120.4
H9A—C9—H9B 109.5 C26—C27—C22 120.51 (9)
N1—C9—H9C 109.5 C26—C27—C28 129.74 (9)
H9A—C9—H9C 109.5 C22—C27—C28 109.75 (8)
H9B—C9—H9C 109.5 C27—C28—C29 109.83 (8)
C8—C10—H10A 109.5 C27—C28—C21 101.63 (8)
C8—C10—H10B 109.5 C29—C28—C21 112.62 (8)
H10A—C10—H10B 109.5 C27—C28—C30 109.79 (8)
C8—C10—H10C 109.5 C29—C28—C30 110.93 (8)
H10A—C10—H10C 109.5 C21—C28—C30 111.65 (8)
H10B—C10—H10C 109.5 C28—C29—H29A 109.5
C8—C11—H11A 109.5 C28—C29—H29B 109.5
C8—C11—H11B 109.5 H29A—C29—H29B 109.5
H11A—C11—H11B 109.5 C28—C29—H29C 109.5
C8—C11—H11C 109.5 H29A—C29—H29C 109.5
H11A—C11—H11C 109.5 H29B—C29—H29C 109.5
H11B—C11—H11C 109.5 C28—C30—H30A 109.5
C1—C12—C13 113.85 (8) C28—C30—H30B 109.5
C1—C12—H12A 108.8 H30A—C30—H30B 109.5
C13—C12—H12A 108.8 C28—C30—H30C 109.5
C1—C12—H12B 108.8 H30A—C30—H30C 109.5
C13—C12—H12B 108.8 H30B—C30—H30C 109.5
H12A—C12—H12B 107.7 N2—C31—H31A 109.5
C20—C13—C14 111.87 (8) N2—C31—H31B 109.5
C20—C13—C12 110.16 (8) H31A—C31—H31B 109.5
C14—C13—C12 108.36 (8) N2—C31—H31C 109.5
C20—C13—H13 108.8 H31A—C31—H31C 109.5
C14—C13—H13 108.8 H31B—C31—H31C 109.5
C12—C13—H13 108.8
C2—N1—C1—O1 −85.70 (9) C19—C14—C15—C16 −0.24 (15)
C9—N1—C1—O1 55.02 (11) C13—C14—C15—C16 179.36 (9)
C2—N1—C1—C12 154.89 (8) C14—C15—C16—C17 0.36 (16)
C9—N1—C1—C12 −64.39 (11) C15—C16—C17—C18 −0.04 (16)
C2—N1—C1—C8 28.56 (10) C16—C17—C18—C19 −0.40 (16)
C9—N1—C1—C8 169.28 (8) C1—O1—C19—C18 −177.53 (8)
C19—O1—C1—N1 −149.92 (8) C1—O1—C19—C14 3.06 (14)
C19—O1—C1—C12 −29.24 (11) C17—C18—C19—O1 −178.90 (9)
C19—O1—C1—C8 100.29 (10) C17—C18—C19—C14 0.53 (15)
C9—N1—C2—C3 22.49 (15) C15—C14—C19—O1 179.16 (9)
C1—N1—C2—C3 164.79 (10) C13—C14—C19—O1 −0.44 (14)
C9—N1—C2—C7 −159.66 (9) C15—C14—C19—C18 −0.21 (14)
C1—N1—C2—C7 −17.36 (11) C13—C14—C19—C18 −179.82 (9)
C7—C2—C3—C4 −0.12 (15) C14—C13—C20—C21 117.80 (11)
N1—C2—C3—C4 177.51 (10) C12—C13—C20—C21 −121.61 (11)
C2—C3—C4—C5 0.29 (16) C13—C20—C21—N2 −179.70 (9)
C3—C4—C5—C6 −0.46 (17) C13—C20—C21—C28 0.79 (18)
C4—C5—C6—C7 0.44 (17) C22—N2—C21—C20 −179.21 (9)
C5—C6—C7—C2 −0.28 (16) C31—N2—C21—C20 3.22 (16)
C5—C6—C7—C8 −174.41 (10) C22—N2—C21—C28 0.39 (11)
C3—C2—C7—C6 0.12 (15) C31—N2—C21—C28 −177.17 (9)
N1—C2—C7—C6 −177.89 (9) C21—N2—C22—C23 179.71 (10)
C3—C2—C7—C8 175.44 (9) C31—N2—C22—C23 −2.79 (17)
N1—C2—C7—C8 −2.58 (11) C21—N2—C22—C27 −0.10 (12)
C6—C7—C8—C11 −43.62 (15) C31—N2—C22—C27 177.40 (10)
C2—C7—C8—C11 141.72 (9) N2—C22—C23—C24 −179.88 (10)
C6—C7—C8—C10 77.68 (13) C27—C22—C23—C24 −0.09 (15)
C2—C7—C8—C10 −96.98 (10) C22—C23—C24—C25 0.19 (16)
C6—C7—C8—C1 −166.08 (11) C23—C24—C25—C26 −0.08 (17)
C2—C7—C8—C1 19.26 (10) C24—C25—C26—C27 −0.14 (16)
N1—C1—C8—C7 −28.15 (9) C25—C26—C27—C22 0.23 (15)
O1—C1—C8—C7 83.84 (9) C25—C26—C27—C28 −179.83 (10)
C12—C1—C8—C7 −150.86 (8) N2—C22—C27—C26 179.71 (9)
N1—C1—C8—C11 −149.73 (8) C23—C22—C27—C26 −0.12 (15)
O1—C1—C8—C11 −37.73 (11) N2—C22—C27—C28 −0.24 (11)
C12—C1—C8—C11 87.57 (10) C23—C22—C27—C28 179.93 (9)
N1—C1—C8—C10 84.53 (9) C26—C27—C28—C29 −60.05 (13)
O1—C1—C8—C10 −163.48 (8) C22—C27—C28—C29 119.89 (9)
C12—C1—C8—C10 −38.18 (11) C26—C27—C28—C21 −179.50 (10)
N1—C1—C12—C13 171.51 (8) C22—C27—C28—C21 0.44 (10)
O1—C1—C12—C13 54.37 (10) C26—C27—C28—C30 62.18 (13)
C8—C1—C12—C13 −70.57 (11) C22—C27—C28—C30 −117.88 (9)
C1—C12—C13—C20 −173.83 (8) C20—C21—C28—C27 179.07 (10)
C1—C12—C13—C14 −51.16 (11) N2—C21—C28—C27 −0.49 (10)
C20—C13—C14—C19 145.65 (9) C20—C21—C28—C29 61.62 (14)
C12—C13—C14—C19 24.02 (12) N2—C21—C28—C29 −117.94 (9)
C20—C13—C14—C15 −33.94 (13) C20—C21—C28—C30 −63.95 (14)
C12—C13—C14—C15 −155.57 (9) N2—C21—C28—C30 116.48 (9)

References

  1. Ashraf, M., Gainsford, G. J. & Kay, A. J. (2012). Aust. J. Chem. 65, 779–784.
  2. Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Klajn, R. (2014). Chem. Soc. Rev. 43, 148–184. [DOI] [PubMed]
  7. Koelsch, C. F. & Workman, W. R. (1952). J. Am. Chem. Soc. 74, 6288–6289.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989016016042/hb7609sup1.cif

e-72-01659-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989016016042/hb76091sup4.hkl

e-72-01659-1sup4.hkl (268.2KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989016016042/hb76092sup3.hkl

e-72-01659-2sup3.hkl (610KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016016042/hb76091sup4.cml

Supporting information file. DOI: 10.1107/S2056989016016042/hb76092sup5.cml

CCDC references: 1509185, 1509184

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES